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Optimization plays a key role in industrial applications. The problems investigated
in this research span multiple industries in Production Operations Management,
Scheduling and Telecommunications. Most of the optimization problems encountered
are NP-hard and therefore difficult to solve. We provide below a brief description of

the results obtained for the specific problems considered in this study.

In the first problem discussed in Chapters two and three, we present a structural

and computational investigation of a new class of weak forecast horizons — minimal

forecast horizons under the assumption that future demands are integer multiples of

a positive real number. Apart from being appropriate in most practical instances,

the discretenessassumption offers a significant reduction in the length of a minimal
vi
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forecast horizon over the one using the classical notion of continuous future demands.
We provide several conditions under which a discrete-demand forecast horizon is
also a continuous-demand forecast horizon. We also show that the increase in the
cost resulting from using a discrete minimal forecast horizon instead of the classical

minimal forecast horizon is modest.

In Chapter four, we consider the problem of traffic grooming in all-optical networks
with the objective of throughput maximization. We present an integer programming
formulation which addresses this objective while constraining the number of optical
transceivers at each node, the link load, and the capacity of each lightpath. Based
on the structural properties of the problem we develop an heuristic algorithm based
on a column generation technique. The algorithm is easy to implement, requires a
modest amount of CPU time and provides high quality solutions. To ascertain the
quality of solutions obtained by our column generation based algorithm, we present an
alternative formulation which allows us to develop an upper bound using a Lagrangian
relaxation technique. An extensive computational study is presented to justify our

claims.

The final problem discussed in Chapter five of this study is a two-stage blocking flow-
shop scheduling problem with a material handling constraint. We develop heuristic
algorithms and a meta-heuristic search method to solve this problem. Such prob-
lems are common in production system design, service facilities design, or specialty
jobs such as petrochemical processing. The absence of intermediate buffers between
the stages here causes the blocking of jobs when downstream machines are occupied.

The objective is to minimize the makespan. We show that this problem is unary

vii

www.manaraa.com



NP-hard. We then explore the special structural features of this problem and develop
two problem-specific solution construction heuristics for different job processing time
scenarios. We show that these heuristics can speed up solution evolution rate by pro-
viding good starting points for a genetic algorithm, particularly when the problem is

large and computational efficiency is paramount.

viil
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CHAPTER 1

INTRODUCTION

This study focuses on the the application of optimization techniques in difficult prac-
tical problems. Most discrete optimization problems we encounter in practice require
unique solution approaches. The approaches depend on problem structures as well as
the managerial implications involved. Every problem discussed in this study can be
modeled using pure or mixed integer programs. However, it is very difficult to obtain
optimal solutions to these problems since most are NP-hard. Therefore, heuristic
and meta-heuristic methods become very useful in practice. In this study we obtain
optimal solutions where possible, and heuristic solutions where optimality is difficult

to achieve.

The first problem deals with computing forecast horizons in multi-period decision
problems. In Chapter two, we discuss the viability of integer programming as a tool
to compute forecast horizons. In Chapter three, we extend the discussion and in-
troduce a new type of weak forecast horizon - a forecast horizon subject to discrete
future demand. The second problem focusses on traffic routing in optical networks
with wavelength division multiplexing. The problem is first formulated as an inte-
ger program. We then develop an algorithm based on column generation to solve
this problem. The third problem looks at a problem of production scheduling under

flow-shop environment subject to blocking. We apply meta-heuristic search meth-

www.manaraa.com



ods, specifically genetic algorithms, as a solution approach for this problem. A brief

introduction to these problems is provided below.

1.1 Computing Forecast Horizons subject to Discrete Future Demand

In a multi-period decision making environment, the need for a robust decision making
process requires managers to evaluate the role that future business data (e.g., costs,
demands) play in determining current decisions. Managers involved in production
and operations decisions typically use forecasts for the first several periods to evaluate
current decisions. The signals obtained from forecast data, despite their inaccuracies,
cannot be ignored and are routinely incorporated into current decisions. Here, a
fundamental issue is the extent of the impact of future data on current decisions.
In this context, the concept of a forecast horizon has been widely studied in the

operations management /research literature (Chand et al. [20]).

We consider the problem of determining forecast horizons in the standard Dynamic
Lot-Sizing Model (DLS). The DLS involves time-varying deterministic demands, and
is concerned with determining appropriate production lot sizes in the presence of
setup costs for production and holding costs for carrying inventory from one period to
the next. Properties of optimal solutions of the DLS problem have been extensively
studied in the literature. Since the initial inventory is zero, and backlogs are not
allowed, production must take place in the first period; in each production period,
the quantity produced is the sum of the demand over an integer number of periods

[103).

A decision horizon refers to the number of the next few periods, say 7, for which
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decisions must be made in the current period. An integer T is referred to as a
forecast horizon corresponding to the decision horizon 7 if the data (i.e., demands
and costs) beyond period T does not influence the optimal decisions for the first =
periods in any N-period problem with N > T + 1. For a given decision horizon, the
importance of a forecast horizon 7', if it exists, is immediate: decisions for the first 7
periods of some optimal solution of the T-period problem are also optimal for every
instance of the problem with more than 7" periods. Consequently, there is no need to
forecast data beyond period T'. Also, if T is a forecast horizon for a given decision
horizon, then so is every integer 7° > T + 1. Thus, obtaining the minimal forecast

horizon for a given decision horizon becomes relevant.

One of the earliest studies of forecast horizons in operations management is Wagner
and Whitin [103][102], who analyzed a problem of determining lot sizes over time in
the presence of setup costs, holding costs, and deterministic non-stationary demands.
This problem is known as the dynamic lot-size (DLS) problem. Furthermore, the
concept of forecast horizons has been extended to a wide variety of dynamic decision
problems; e.g., capacity expansion (Rajagopalan [87]|[88]), cash management (Chand
and Morton [21], Sethi [94]), inventory management (Bean et al. [15], Chand and
Morton (22|, Federgruen and Tzur [40], [41]), machine replacement (Chand and Sethi
23|, Nair and Hopp [77]), plant location (Bastian and Volkmer [14], Daskin et al.
[32]), production planning (Johnson and McClain [60], Kleindorfer and Lieber [64],
Aronson et al. [4]), sequencing and scheduling (Remapala [90], Blocher and Chand
[18]). For an extensive classified bibliography of the forecast horizon literature, see

Chand et al. [20].
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Given the strong properties associated with a forecast horizon, the issue of its exis-
tence is fundamental. However, for a wide variety of problems, the existence question
has not been answered satisfactorily. It is possible that, a forecast horizon may not
exist for a dynamic decision problem [95]. For the DLS model with constant ini-
tial demand, Chand et al. [24] established the existence of a forecast horizon (and,
hence, a minimal forecast horizon). They also characterized demands dy, (dy, dg), and
(dy,dg,ds) for which T' = 1,2, 3, respectively, are forecast horizons. For larger values
of T, this characterization becomes exceedingly complex. A typical approach in the
literature has been to propose procedures for identifying a forecast horizon under the
assumption that it exists (see e.g., Chand and Morton [21, 22|, Lundin and Morton

[68], Bensoussan et al. [16]).

As a solution approach for computing forecast horizons, integer programming (IP)
has been largely ignored by the research community. However, the modeling and
structural advantages of this approach coupled with the recent significant develop-
ments in computational integer programming make for a strong case for its use in

practice. We elaborate on these advantages below.

1. Recall that, given the demands for the first T" periods, T is a forecast horizon
for a given decision horizon if, there exists at least one common optimal solution
to the decision horizon, for all problem instances with length geT. Computa-
tionally, this requirement of the existence of an optimal solution can become
challenging in the presence of multiple optimal solutions. Existing algorithms
that use necessary and sufficient conditions for an integer T to be forecast

horizon may potentially need to investigate all these optimal solutions. This
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enumeration of multiple optimum solutions becomes especially time consuming

if T is not a forecast horizon.

As we see later in chapters two and three, necessary and sufficient conditions for
a given integer T' to be a forecast horizon can be posed as a feasibility problem
for a linear integer program. The existence requirement noted above is implic-
itly modeled using variables and linear constraints. The search for a feasible
integer solution, by state-of-the-art integer programming approaches, involves
the use of powerful techniques such as linear implications over an integer do-
main (e.g., cutting planes), strong linear relaxations (e.g., linear programming),
and heuristics. For modest values of 7', the feasibility problems can be solved

efficiently (Section 2.5).

2. Over the past 15 years, there has been a phenomenal progress in computa-
tional integer programming. The success of frameworks such as branch-and-cut
[52][83] and branch-and-price [12] has lead to a revival of an area that for a long
time had fallen out of favor. Today, several powerful implementations exist
both in industry (e.g, CPLEX!, LINDO?, Xpress-MP?) and academia (MINTO
[79], MIPO [10]) and are being widely used to solve a variety of large-scale,

real-world problems.

3. The constraint-based nature of integer programming makes it preferable as a
single framework to address several commonly occurring variants in a dynamic

decision-making environment. For instance, consider the following variants of

!CPLEX is a trademark of ILOG, Inc.
2LINDO is a trademark of LINDO Systems, Inc.
3Xpress-MP is a trademark of Dash Optimization Ltd.
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the classical DLS problem: (i) a DLS problem in the presence of a warehouse-
capacity limit that prevents the ending inventory at any period from exceeding
the limit, and (ii) a two-product DLS problem in the presence of individual
and joint setup costs for the two products. It is straightforward to extend the

integer programming approach for these variants.

The classical notion of a forecast horizon, addressed in the literature places no restric-
tions on the future data. The dynamic lot-size model of Wagner and Whitin [103]
accommodates the possibility that a future demand could take any non-negative value.
In practice, the context of the problem being investigated often allows us to specify
additional characteristics of future demands. Typically, demand realizations obey a
well-defined granularity that prohibits them from assuming any arbitrary values. For
example, for a car manufacturer that needs to consider only integer valued demands, a
forecast horizon for all non-negative demands is possibly an overestimate resulting in
unnecessary forecasting. To illustrate this idea, consider the constant initial demand
(set equal to one without loss of generality) dynamic lot-size problem studied in [24].
For the situation when the holding cost is one and the setup cost is 21, the minimal
forecast horizon is 42. An interesting question is the impact, on the length of the
minimal forecast horizon, of the knowledge that future demands are integer valued.
It turns out (details are provided later in Section 4.3) that the minimal forecast hori-
zon for the integer valued future demand scenario is only 32, a reduction of 23.8%
in the length of the forecast horizon. As forecasting well into the future can be time
consuming, expensive, and unreliable, the benefits of this reduction are substantial.

The reduction in the length of the minimal forecast horizon is not restricted only to
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the case of integer valued future demands; it is a typical outcome whenever future
demands are restricted to be an integer multiple of some fixed, positive real num-
ber. As the granularity of the discretization becomes finer, the length of the minimal
forecast horizon increases and eventually coincides with that of the classical forecast
horizon. This study formally introduces the concept of forecast horizons subject to
discrete future demands and compares them, both structurally and computationally,

to classical forecast horizons.

1.2 A Traffic Grooming Algorithm for Wavelength Routed Optical Net-

works

Optical fiber-based networks are expected to play a major part in the delivery of
telecommunication services in the future (Cinkler, [28]). The proliferation of such
networks has prompted the development of sophisticated techniques to allow increas-
ing amounts of traffic to be transported on the same physical network. In the early
phases of this evolution, Wavelength Division Multiplexing (WDM) was employed to
allow multiple wavelengths of light to be transmitted on the same optical fiber. WDM
networks use Optical Add Drop Multiplexes (OADMs) at the nodes, so as to be able
to add and drop signals of specific wavelengths. Due to technological constraints,
the OADMSs performed these add/drop operations in the electrical domain (i.e., op-
tical signals were converted to electrical signals before adding/dropping traffic). For
such networks, each node requires expensive optical transmitters and receivers (also
referred to as transponders/transceivers) thereby motivating network designers to

choose designs that minimize the number of transponders used.
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The current generation of commercial WDM systems incorporates optical cross-
connects (OXCs) in addition to the OADMs at each node and increasingly utilize
mesh (and not ring) based topologies (Zhu and Mukherjee, [110]). OXCs are switches
capable of directing specific wavelengths of light from input ports to output ports en-
tirely in the optical domain (i.e., without converting light signals to electrical signals).
These nodes are generically referred to as wavelength routed switches or wavelength
routers (Dutta and Rouskas, [37]) and the networks are referred to as all-optical net-
works. The essential mechanism of transport in all-optical networks is a lightpath,
which is a communication channel established between two nodes in the network of
OXCs that uses the same wavelength of light for its entire path (Dutta and Rouskas,
[37]). Currently, each such wavelength of light is capable of carrying upto 10 Gbps,
while 40 Gbps capable systems are on the verge of being introduced (Dutta and
Rouskas, [37]). In order for such a high data-carrying capacity to be utilized efficiently,
a number of lower-rate traffic streams must be multiplexed onto a single lightpath.
This multiplexing process gives rise to the concept of traffic grooming, which consists
of techniques that combine lower-speed traffic requests into available wavelengths in
order to meet network design goals such as cost minimization or throughput max-
imization (Modino et al., [73] and Zhu and Mukherjee, [110]). In this study, we

examine the objective of throughput maximization for such all-optical networks.

Traffic demands (or connection requests) for such optical networks can be character-
ized by a source (origin), a destination (termination point) and a granularity (band-
width requested). Each such demand needs to be routed on a physical path in the
network. All nodes other than the source and destination of each such path are re-

ferred torasiintermediate nodes. The bandwidth of each such demand is typically one
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of 0C-48, OC-12, OC-3 and OC-1*. Each such physical path can correspond to one
single lightpath (in the case of single-hop networks) or could be a series of lightpaths
(in the case of multi-hop networks). A major advantage of single-hop networks is that
the signal travels in an all-optical medium and only a single wavelength is required to
establish a connection. In multi-hop networks, a single connection between two nodes
can sequentially utilize multiple lightpaths and therefore necessitates the ability to
change/convert the wavelength of the transmission at network nodes. Wavelength
conversion can be accomplished in the electrical domain but then the advantages of
all-optical transmissions are lost. All-optical wavelength converters are available but
are (currently) prohibitively expensive (Chu et al., [27]). Therefore, in this study we
consider only single-hop networks, i.e., networks in which wavelength conversion is

not allowed.

1.3 A Blocking Flowshop Scheduling Problem with a Material Handling

Constraint

Blocking occurs in many flowshops that have limited or no buffer capacity between
two successive processing stages or machining centers. When the buffer is full or when
there is no space to discharge the completed job, the upstream processing stage is not
allowed to release that job and thus, blocking occurs. This study develops heuristic
algorithms which schedule jobs through processing systems such as paint shops, or
specialty chemicals plants with special material binding constraints. Such systems

with no buffers between processing stages are often characterized under the class

4An OC-1 is the lowest capacity optical communication channel which has a capacity of 51.84
MbpsmAm OC=rmcamcarry n*51.84 Mbps.
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Material Handling System

Z1 Z2
- Machine M; Machine My Machine My
Y
® ® ® ®

Figure 1.1: A Two-Stage Blocking Flowshop.

»

the “blocking flowshop.” A blocking flowshop consists of a set of k > 2 processing
stages |21, Zo, . .., Zi| with stage Z; having m; > 1 parallel machines. There are n
jobs {Jj | 1 < j < n} ready to be processed. A function 7(Jj) = [pj1,Pj2,-- -, Pjkl
denotes the various tasks or equivalently the processing times required by Jj in stages
|21, Za, . . ., Zy|, respectively. This notation implies that job Jj will first be processed
in Z; for p;; units of time and then in Z, for p;; units of time and so on, until it

finally completes its processing in Zj, for p;;, units of time. Task p;; may be processed

on any of the m; identical parallel machines {M;1, Mo, ..., My, } in Z;.

For the classification of scheduling problems and notation, we follow Graham et al.
[51], Lawler, et al. [66]. A problem is represented by the form «|g3|y, which in
our case is Fk|blocking, my, ma, . .., mMk|Cmaee, where o = Fk represents the flowshop
environment, with &k processing stages, 5 = {blocking, mi,ms, ..., my} indicates the
blocking restriction and the number of machines at each stage. v = C},4z is the
optimality criterion, i.e., minimization of finish time (makespan) is the goal. Ci,u.
is defined as follows. Let C; be the finish time of job Ji under schedule S, then

Cmaz = max{ Cl } .
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Sequencing dissimilar jobs through a blocking flowshop quickly becomes surprisingly
complex. We specifically consider the case of a blocking flowshop with k¥ = 2 and
operating with a special material handling restriction. This is a variation of the
following problem: F2|blocking,m; = 1,mg = 2|Cpa.. Furthermore, we consider the
case when Z; has only one machine (M7) and Z; has two identical but sequentially laid
machines (My; and Mas). A single material handling system (like a conveyor) moves
all the jobs between the machines, the path of every job being M7 — Mg — Mo (see
Figure 1.1). Each job is first processed on My, then on either Ms; or Mae. In other
words, a job requires processing by M;, and then by either My, or My, but not both.
The material handling restriction acts as follows. A job completed on M; may move to
My through My only when machine Moy, is free. For this reason, a completed job on
M; is blocked if machine My, is processing a job even if My, is free. We characterize
this particular problem structure by £2|blocking, M H,m; = 1,mg = 2|Ciuae, where

M H denotes the above special material handling restriction or constraint.

1.4 Organization of the Dissertation

In chpters two and three, we consider the problem of computing forecast horizons in
dynamic decesion problems. Specifically we consider the Dynamic Lot-size problems
introduced by Wagner and Whitin [103]. In chapter two, we investigate the prac-
ticality and usefulness of integer programming in computing forecast horizons. We
formulate well known necessary, and necessary and sufficient, conditions given in [68]
and [21], as integer programming models. Also we introduce a new weak forecast hori-
zon; forecast horizon subject to discrete future demand. In Chapter three, discrete
forecast horizon is analyzed more thoroughly. A column generation based heuristic
is introduced to the problem of traffic grooming in optical networks is discussed in
Chapter four. Also a Lagrangian relaxation based upper bound procedure in used
to compare the heuristic solution. In chapter five, we study the problem of flowshop
scheduling under material handling constraint. In this chapter, a number of heuristics

is'proposed tosolve this problem. Further analysis of this problem is done by using
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a hybrid-Genetic Algorithm (GA) search method. Finally chapter six concludes the

study. The chapter also outline the future research directions.
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CHAPTER 2

INTEGER PROGRAMS FOR COMPUTING MINIMAL FORECAST HORIZONS

2.1 Synopsis

In this chapter, we develop integer programs (IP) for computing minimal forecast
horizons for the classical dynamic lot-sizing problem (DLS). The research community
has thus far failed to evaluate the usefulness of Integer programming as a viable
solution approach in this area. We feel that the modelling and structural advantages
of the IP approach coupled with the recent significant developments in computational
integer programming make for a strong case for its use in practice. Our objectives
for this chapter are three fold: (i) Formulate the well-known Lundin and Morton [68]
sufficiency conditions and characterizations (i.e., necessary and sufficient conditions)
for forecast horizons as feasibility /optimality questions in 0-1 mixed integer programs.
(ii) Develop integer pogramming based approach for evaluating the necessary and
sufficient conditions of Chand and Morton [22]; and (iii) Through the use of an
extensive computational study, establish the effectivness of IP-based approaches. We

start by formulating the DLS problem.

13
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T  : the problem horizon, i.e., the number of periods.
k. setup cost for production.

h  : holding cost per unit per period.

d; : demand in period j, 7 = 1,2,...,T.

Q; : quantity produced in period j, 7 = 1,2,...,T"
1 if a setup is required in period j;
0 otherwise; 7 = 1,2,...,T.

I, : inventory at the end of period j, j = 1,2,...,T.

Problem DLS-T

T
Minimize Z[kX i+ i
j=1
subject to:
T
Q < Q_d)X;1<5<T
r=j

I = Lia+Q—dj1<j<T

IIr — 0
Iijj > 0
Xj S {071}

2.2 Forecast Horizons for Dynamic Lot-Sizing

Definition: Let (Q)* be the first period production quantity in an optimum solution
of an F-period problem with d; as the demand for period ¢, ¢+ = 1,2, ..., F'. Period F'is
a forecast horizon if for every N > F' and all vectors of demands d;, ¢ = F +1,..., N,
there exists at least one optimal solution with (Q1')* as the first period production

quantity. The number of periods of demand covered by (Q1)* is the decision horizon.
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2.3 Sufficiency Conditions (Lundin and Morton [68])

First, we present an IP formulation that identifies a planning horizon that satisfies

the following sufficient conditions proved in Lundin and Morton [68].

A period F is a forecast horizon if an optimal solution with first period production
quantity, say, (Q¥)* to the F-period problem that has its last setup in period L satisfies
the following condition: every S-period problem with L — 1 < S < F' has an optimal

solution with first period production quantity equal to (QF)*.

The period L is called the last production point; period L — 1, at the end of which
inventory is zero, is called the last regeneration point. The set of periods from L — 1
to F'is called the regeneration set. Wagner and Whitin [103] had shown earlier that
any N-period problem with N > F'+1 has a production point in L, ..., FF'4+ 1. Thus,
if every S-period problem with L — 1 < S < F' has an optimal solution with first
period production quantity equal to (QF)*, then it must be that (Q1)* is an optimal
first period production for every N-period problem, N > F + 1.

We formulate an integer program that determines whether a given time horizon T’
satisfies the sufficiency conditions above. In order to do this, note that we need pre-
determined optimal costs for problems with planning horizons ranging from 1 to 7.

We use the following additional notation.

t . . . . .. .
Q% Quantity produced in period j in a t-period problem.
, 1 if a setup is required in period j for a t-period problem;
Xt —
J
0 otherwise.
t . . . . . . .
I Inventory carried over from period j to j+1 in a ¢-period
problem.
. 1 if period 7 is in the regeneration set of the T-period problem;
R. —
J
0 otherwise.
Mpm=wnThesoptimal cost for a t-period problem.
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Problem DLS-T-SC: Find a feasible solution to the following set of constraints

t t
STEX{ Y hIL=M, 1<t<T (2.1)
§=1 §=1
t
O d)XI>Q  1<j<t1<t<T (2.2)
r=j
L4Qiy—diy—1,=0 0<j<t-1,1<t<T (2.3)
RY =1 (2.4)
RL [ =1 (2.5)
1 T
T T .
1—Rj§TZXT 1<j<T-2 (2.6)
r=j542
T
Qi -QM <O d)-R) 1<t<T-1 (2.7)
r=1
T
Qi -Q">-_d)1-R]) 1<t<T-1 (2.8)
r=1
It =0
It =0

t i t
Iijijj 2 0

T T
X5, R; €{0,1}

Constraints (2.1), (2.2), and (2.3) ensure that only optimal solutions are consid-
ered. The optimal costs M;,t = 1,...,T, are obtained by solving the corresponding
t-period standard DLS problem (Section 2.2). Constraints (2.4) and (2.5) ensure
that periods T and T'— 1 are always in the regeneration set of the T-period problem.
Constraint (2.6) determines whether a period, other than T and T'— 1, is in the regen-
eration set. Constraints (2.7) and (2.8) enforce that, for a forecast horizon, the first
period production quantities are all equal for planning horizons in the regeneration

set.

Next, we formulate an integer program for identifying the smallest planning horizon
that satisfies these sufficiency conditions for a forecast horizon. We assume that an

upper bound;denoted by 7, on the length of a forecast horizon is known. We define
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the following additional notation:
4

. 1 if period j is in the regeneration set of the t-period problem;
Rt =

7
0 otherwise.

1 if ¢ is the minimal forecast horizon;

0 otherwise.

1 if ¢ is the minimal forecast horizon and j belongs to the
th = regeneration set of the ¢-period problem;

0 otherwise.
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Problem DLS-MT-SC: Find an optimal solution to the following integer program

Qt

TU
Minimize Z kW,
k=1
subject to:
t t
EEDNIE
j=1 j=1
t
(Z d) X! > Q)
I+ QG — d§+1 =0
Ri=1
1R < = Z X!
r=3+42
TU
S =1
t=1

Y} < 0.5R; +0.5W,

W>m+m—1

t+1 Z d
AR - 2@1_w

IE=0

I} =0
Q5 X >0
X}, R, Y} €{0,1}

1<t<T" (2.10)

<t<Tv (2.11)
(2.12)

(2.13)

(2.14)

(2.15)

1<t<T" (2.16)

1<t<T (2.17)

1<t<T—1  (2.18)

1<t<T*—1  (2.19)

The objective function minimizes the length of the forecast horizon. Constraints

(2.9)-(2.14) play the same role they did in the previous formulation. Constraint (2.15)

ensures that only one planning horizon is chosen as a forecast horizon. Constraints

(2.16) and (2.17) are a linearization of the constraint Y} —

R5W,, and enforce that it

istonly necessary toevaluate regeneration sets of the planning horizon corresponding
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to the minimum forecast horizon. Constraints (2.18) and (2.19) check whether all
the members in the regeneration set have the same optimal first period production

quantity.

2.4 Necessary and Sufficiency Conditions (Chand and Morton [22])

Chand and Morton [22] were the first to develop a procedure for determining minimal
forecast horizons. Their approach was designed around minimizing the regeneration
set defined in Lundin and Morton [68]. In [68], the regeneration set was defined to
consist of all the periods from the period before the last production point to the final
period (i.e., periods L(T) — 1 to T'). Chand and Morton recognized that the actual
regeneration set (i.e, the set of periods that could potentially be regeneration points
in a longer horizon problem) could actually be much smaller than that defined in [68].
They defined the concept of a minimal regeneration set and developed a procedure
for identifying it. Once the minimal regeneration set has been identified, it only
remains to test whether all the planning horizons in it have a common optimal first
period production quantity. The following four steps follow their procedure. Steps 1-3
identify the minimal regeneration set, which we denote by R(T'); Step 4 checks if all
the planning horizons in set R(7T) have a common first period production quantity

for at least one optimal solution. We begin by initializing set R(T") = {0}.
Step 1: Let M7 be the optimal cost of a T-period problem with the additional

restriction that period s+ 1 is the last production point. This cost can be computed

using the following integer program.

www.manaraa.com



Problem: DLS-T-MTS

T

Minimize Z (kX; + hl;)
j=1

subject to:

T
(Z dr)Xj > Qj

I+ Qi1 — djp1 — Ijyn =0

Xerl =1
T

> X

r—=s+42
I() — 0
Ir =0
1;;Q; >0
X, €40,1}

20

1<ji<T
0<j<T—1
(2.20)
(2.21)
1<5<
1<) <

The formulation is similar to Problem DLS-T (Section 2.2), except for Constraints

(2.20) and (2.21). These two conditions ensure that the last setup is in period s + 1.

Thus, period s + 1 is the last production point; the objective function is the lowest

cost for the T-period problem with the additional restriction that s + 1 is the last

production point.

Step 2:

point (i.e.,

Identify the maximum period s such that (s + 1) is the last production

s corresponds to the the maximum value of L(T) — 1 over all optimal

solutions) for a T-period problem using the following integer program. We define the

following.

\ 0 otherwise.

if period s + 1 is the maximum last production point over all

optimum solutions of the T-period problem;
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Problem: DLS-T-MLT

T-1

Maximize Z sk
s=0

subject to:

Mp>MiR, 0<s<T-—1 (2.22)

T-1
> R,=1 (2.23)
s=0

R, €{0,1} 0<s<T-1

Note that My < M3, s =0,...,T — 1. The reverse constraints (2.22) along with the
Constraint (2.23) and the objective function ensure the selection of only that optimal
solution (of the T-period problem) whose last regeneration point is maximum. It is
easy to see that Problem DLS-T-MLT is always feasible; let I*(T") denote its optimum
solution value, and R(T') = {I*(T")}.

Step 3: Compute the ratios R}, and RL as follows:

M2 — ME
RL, = —L T "TY<qg<T-1
N R A
BT — MT+I€—M¥
l* (T —1*(T))h

Find v, the largest period that satisfies the condition:

R = min R].
qe{l*(T)41,...T}

Include v in the regeneration set, i.e., R(T") = R(T) U {v}. If v < T — 1, then set
I*(T) = v and go back to Step 3. Otherwise add T to the regeneration set, i.e.,
R(T) = R(T)U{T} and proceed to Step 4.

Step 4: Check whether all the planning horizons in the minimal regeneration set

R(T) have a common first period production quantity in at least one optimal solution.
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Problem DLS-T-MRT: Find a feasible solution to the following set of constraints
t t

S EXE4> hIt =M, te R(T)

=1 j=1
t
O d)Xi>Q! 1<j<t, teRT)
r=j

QL —Q:=0 s,tecR(T),s#t (2.24)
IL=0 (e R
I'=0 teR(T)
‘ .
];,Qj>0 lﬁjﬁt,tER(T)

Xie{0,1} 1<j<t teR(T)

The first three sets of constraints are similar to those in Problem DLS-T-SC (Sec-
tion 2.3), except that these constraints are imposed only on the planning horizons in
the minimal regeneration set R(T"). Constraints (2.24) check for the existence of a
common optimal first period production quantity for all the planning horizons in the

minimal regeneration set.

For a given value of T', Steps 1-4 establish whether or not 7" is a forecast horizon. The
minimal forecast horizon is the smallest value of T, 1 < T < T" for which Problem

DLS-T-MRT above has a feasible solution.

2.5 Computational Results

Our main purpose in implementing the formulations discussed in this chapter is to
test the practicability of the approach for realistic problems. For the dynamic lot-
sizing problem, the literature on computational results of forecast horizon procedures
is limited. Chand et al. [24] report a graphical illustration of minimal forecast hori-
zons for the unit demand case. For non-stationary demand, Chand and Morton [22)]
provide results for several data patterns and illustrate the benefit of computing mini-

mal forecast horizons'by comparing with results from an earlier report of Lundin and
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Morton [68]. These studies do not report details such as the computing platforms
and the computing times. However, since our intention is to demonstrate an alterna-
tive approach and not to compare based on measures such as computing times, the

description of the test bed used in these papers is sufficient for our purpose.

The integer programming formulations were solved using the MINTO (version 8.1)
programming library [79]. All the computations were carried out on a Pentium IV

computer (2.4 GHz, 512 MB RAM) running Red Hat Linux 7.2.

2.5.1 Stationary demand

Our setup is the same as that in Chand et al. [24]: unit demand in each period; the

holding cost, h = 1; the setup cost, k, varies from 10 to 25 in unit increments.

For stationary demand, the minimum forecast horizons and the corresponding com-
putation times are provided in the the second and third columns of Table 2.5.1. As
mentioned in Chand et al. [24], the relationship between the setup cost and the min-
imal forecast horizon is difficult to characterize precisely. As a function of the setup
cost k, the minimum forecast horizon has local peaks where it equals approximately
twice the setup cost; between two adjacent peaks, corresponding to setup costs of,
say, k1 and ks, the minimum forecast horizon is smallest at approximately the average

ki+tks
setup cost =5-=.

2.5.2 Non-stationary demand

We use the setup designed by Chand and Morton [22]. Here, the demands are ma-
nipulated over two dimensions. The first one is the rate of growth of the demands. In
order to capture flat, increasing, and decreasing natures of the demand, the function
Diy1 = Do(G)! is used to compute the mean demand in each period. The param-
eter G captures the character of the growth in demand over time. Three values of
this growth parameter are considered: 1.000 (flat), 1.005 (increasing), and 0.995 (de-

creasing): Once the mean is fixed, the actual demand in a period is generated using
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Table 2.1: Minimum Forecast Horizons and the required computational times for unit
initial demand.

k Frin(k) | Time (sec.)
10 20 1.01
11 17 0.92
12 13 0.86
13 18 1.03
14 24 1.73
15 30 34.58
16 26 7.39
17 21 1.16
18 21 1.42
19 28 8.53
20 35 216.63
21 42 402.11
22 37 245.83
23 31 179.32
24 25 10.45
25 32 203.71

the function, Dy 1 = Do(G)" + SDo&, where £ is the standard Normal variate. The
parameter S is a measure of the variability associated with the demand takes three
values: 0.15, 0.50, and 1.15. At any time, if a demand generated is less than zero, it
is set to zero. We thus have nine possible combinations (three values of G and three
values of S) of the two demand-related parameters. The base demand rate, Dy was
set to 10, holding cost h was set to 1. The setup cost k& was allowed to take values
8 values: 10, 15, 20, 30, 50, 75, 100, and 150. For each value of k and each combi-
nation of the 9 demand parameters, we generated 11 instances. The total number of

instances in this test bed is, therefore, 9 x 8 x 11 = 792.

For non-stationary data, the minimum, maximum, and median minimal forecast hori-
zons along with the computation times (in seconds) are reported in Tables 2.5.2-2.5.2.
Figure 3.3 plots the relationship between the setup cost and the median forecast hori-
zons from two different procedures: (i) the smallest forecast horizon satisfying the suf-
ficiency conditions of Section 2.3 and (ii) the minimal forecast horizon (Section 3.2).
For each value of the setup cost, the 11 instances with G = 1.000 and S = 0.15 are
used for the plot. It is interesting to note that the smallest forecast horizons satisfying

the sufficiency conditions of Section 2.3 are reasonably close to the minimal forecast
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horizons. Since the computational effort for verifying the sufficiency conditions is
lesser than that for the necessary and sufficient conditions, the sufficiency conditions

could be used for a reasonable and quick approximation of minimal forecast horizons.

Table 2.2: Minimum forecast horizons for non-stationary demand: flat demand pat-
tern with the growth parameter G = 1.000.

k S$=0.15 S$=0.50 S=1.15

Min. Forecast Horizons Min. Forecast Horizons Min. Forecast Horizons

Min. | Max. | Med. Time Min. | Max. | Med. Time Min. | Max. | Med. Time

(sec.) (sec.) (sec.)

10 2 6 3 0.56 2 6 3 0.21 2 7 3 0.16
15 9 14 8 1.02 2 9 5 0.92 2 8 4 0.73
20 4 23 11 1.11 2 9 4 1.03 2 7 4 0.89
30 3 20 13 1.78 6 15 8 1.52 2 13 6 1.32
50 11 27 19 2.42 5 21 17 1.96 8 14 6 1.61
75 12 24 15 3.52 7 22 15 2.51 6 11 8 1.94
100 15 25 21 35.62 9 17 14 14.24 5 16 9 22.12
150 20 35 28 142.51 16 32 24 125.71 7 28 16 122.16

Table 2.3: Minimum forecast horizons for non-stationary demand: increasing demand
pattern with the growth parameter G = 1.005.

k S$=0.15 S$=0.50 S=1.15
Min. Forecast Horizons Min. Forecast Horizons Min. Forecast Horizons
Min. | Max. | Med. Time Min. | Max. | Med. Time Min. | Max. | Med. | Time
(sec.) (sec.) (sec.)
10 2 8 5 0.83 2 5 3 0.61 2 6 4 0.43
15 3 15 7 0.99 2 5 3 0.78 2 6 4 0.59
20 3 11 8 1.31 2 8 5 1.04 2 7 5 0.81
30 5 14 6 2.17 6 19 14 1.41 4 12 7 0.95
50 6 19 12 3.12 5 23 16 1.94 5 11 8 1.48
75 13 29 17 6.23 8 25 15 5.12 4 15 6 3.82
100 16 26 21 121.52 9 22 16 103.42 3 17 13 89.41
150 18 31 25 452.92 12 27 19 326.12 2 23 16 173.4

Figure 3.4 is a plot of the median forecast horizon as a function of the setup cost
for the three values of S (0.15, 0.50, 1.15) and G set equal to 1.005. For each of
the three values of S, the median minimal forecast horizon typically increases with
the setup cost. For a given setup cost, the median forecast horizon is typically lower
for higher values of S. While a precise mathematical explanation seems difficult
to prove, we offer the following intuitive explanation: a higher value of the demand

variabilitysparametersS indicates a larger fluctuation in the demand thereby increasing
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Table 2.4: Minimum forecast horizons for non-stationary demand:decreasing demand
pattern with the growth parameter G set to 0.995.

k S$=0.15 S$=0.50 S=1.15

Min. Forecast Horizons Min. Forecast Horizons Min. Forecast Horizons

Min. | Max. | Med. Time Min. | Max. | Med. Time Min. | Max. | Med. Time

(sec.) (sec.) (sec.)

10 4 8 5 1.13 2 6 4 1.04 4 7 6 0.82
15 4 14 8 1.52 2 7 5 1.31 2 6 5 0.93
20 6 16 12 1.89 4 12 6 1.42 7 9 6 1.18
30 5 15 10 2.41 7 13 8 1.72 8 13 10 1.39
50 8 25 17 6.27 7 21 14 2.18 6 24 17 1.92
75 14 28 18 22.17 6 22 17 3.62 13 25 16 2.04
100 18 34 24 153.82 12 28 25 24.73 14 23 18 11.04
150 23 36 27 843.23 10 35 25 632.68 10 28 24 428.22

Table 2.5: Forecast horizons from two different procedures: (i) the smallest forecast

horizon satisfying the sufficiency conditions of Section 2.3 and (ii) the minimal forecast
horizon (Section 3.2).

k Smallest Forecast Horizon Min. Forecast Horizon

Satisfying Sufficient Conditions

Min. | Max. | Med. | Time Min. | Max. | Med. | Time

(sec.) (sec.)

10 2 4 3 0.11 2 4 3 0.05
15 3 13 6 0.03 3 13 6 0.64
20 3 17 8 0.06 3 17 7 1.34
30 7 23 11 1.11 4 18 9 2.29
50 10 20 16 2.84 8 20 12 3.18
75 12 23 19 3.06 12 23 15 3.94
100 18 22 19 2.92 15 22 17 35.32
150 22 34 28 55.39 16 32 24 192.44
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Figure 2.1: Relationship between the setup cost and the median forecast horizons from
two different procedures: (i) the smallest forecast horizon satisfying the sufficiency
conditions of Section 2.3 and (ii) the minimal forecast horizon (Section 3.2).

the probability of a large demand, and consequently reducing the forecast horizon.
With S fixed at 0.50, Figure 3.5 presents the relationship between the median minimal
forecast horizon and the setup cost for the three values of the growth parameter, G:
0.995, 1.000, and 1.005. As with Figure 3.4, the minimal forecast horizons typically
increase with the setup cost. The other observation is that the median forecast horizon
is larger for smaller values of G. When G is large, the demands get increasingly larger
in the later periods and as a result, there is a better chance of a smaller forecast

horizon.

Before concluding this section, it is useful to highlight managerial insights and guide-

lines for practitioners gained from our computational results:

e Integer programming offers a practicable and easily generalizable alternative
approach for computing forecast horizons. Most state-of-the-art integer pro-

gramming solvers can be applied directly without any significant customization.
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e For the dynamic lot-sizing problem, the sufficiency conditions of Lundin and
Morton [68] seem to offer an acceptable approximation of minimal forecast
horizons and involve relatively low computational effort as compared to that
involved in verifying the exact characterization of Chand and Morton [22]. The
sufficiency conditions can, therefore, be used for a quick estimate of the minimal

forecast horizon.

e For the dynamic lot-sizing problem, the length of a minimal forecast horizon
for a fixed holding cost typically (i) increases with the setup cost, (ii) decreases
with the variability in the demand, and (iii) decreases as the rate of growth of

demand increases over time.

2.6 Concluding Remarks

Our main purpose in this chapter was to demonstrate integer programming as a
viable option for computing minimal forecast horizons for dynamic decision problems.
To this end, we outline our approach using the dynamic lot-sizing problem. We
formulate two well-known results, a sufficient condition for an integer to be a forecast
horizon and a necessary and sufficient condition for an integer to be a minimal forecast
horizon, as feasibility /optimality problems in mixed 0-1 programs. Numerical results
on a large number of instances with both stationary and non-stationary demand,
demonstrate the solvability of the formulations with a modest amount of computing

effort.

In the next chapter, we continue the discussion of computing forecast horizons. We
introduce and explore the structural properties of a new type of weak forecast hori-

zons.
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CHAPTER 3

DISCRETE FORECAST HORIZONS: ANALYSIS AND COMPUTATIONS

3.1 Synopsis

In this chapter, from a computational point of view, we emphasize our use of 0-1
mixed integer programming. While the forecast horizon literature is extensive, the
use of integer programming to compute forecast horizons has been limited. The
recent significant developments in computational integer programming coupled with
the modeling and structural simplicity of the integer programming approach make a
strong case for its use in computing forecast horizons. Additionally, the structured
and constraint-based nature of integer programming makes it easy to incorporate
additional constraints and to address multi-product variants of the DLS problem.
We illustrate this simplicity on two significant variants of the classical DLS problem
— a capacity-constrained warehouse scenario and a two product DLS problem with
joint and individual fixed costs —and demonstrate the computation of discrete forecast
horizons for these variants. Here, it it worth noting that most existing procedures to
identify minimal forecast horizons depend heavily on the structural properties of the
problem being studied. Therefore, the extension of such procedures to accommodate
significant variants is typically difficult. Our characterization of discrete forecast
horizons, together with the integer programming approach allows us to address new
and important variants in a relatively straightforward manner. Thus, we believe
that our approach has the potential to significantly expand the domains over which

forecast horizon concepts can be investigated.

Before we proceed with the details of our analysis of DLS models with discrete future

demands, we summarize the major contributions of this paper:

30
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1. For a dynamic decision problem, we introduce the concept of a forecast horizon
in the presence of discrete future demand. Specifically, we define FH? as a
forecast horizon assuming future demands to be an integer multiple of some
number ¢ € R,. The classical forecast horizon, which does not place any
restriction on future demand, is denoted by FH®. The minimal forecast horizons
under these two cases (i.e., with and without the discretization) are denoted by

FH? . < FH? To illustrate the

main’

and FH?. | respectively. Clearly, FH?

min’ min
structural connections between a discrete and continuous forecast horizon, we

prove several conditions under which FH? equals FH°. We also examine the

q
min

0

cost implications of using FH; ;, as an alternative for FH ...

2. We characterize a necessary and sufficient condition for an integer T' to be a
minimal forecast horizon when the future demands are discrete. These con-
ditions are a significant relaxation from those detailed in [22], and are widely

applicable due to their non-reliance on specific structural properties.

3. We demonstrate the feasibility and effectiveness of integer programming (IP) as
an approach for computing discrete forecast horizons. Using a detailed compu-
tational study, we illustrate the impact of assuming discrete demand, and the

usefulness of the theoretical properties developed in this Chapter.

4. We illustrate, via a representative computational study, the easy adaptability
of the integer programming approach to two variants of the dynamic lot-size
model under discrete future demand. To the best of our knowledge, these are
the first known forecast horizon computation procedures for the two variants

we discuss.

Before considering the possibility of discrete demands, we summarize some important
forecast horizon results developed with the assumption of continuous demands. Wag-
ner and Whitin [103] showed that if period 7" is a production period in a T-period
problem, T > 2, then T is a forecast horizon. Let period L be the last production

period inran optimal solution to a 7T-period problem. Lundin and Morton [68] ex-

www.manaraa.com



32

tended that result to say that 7' is a forecast horizon if all the problems with horizon
L—1,L,L+1,...,T have a common optimal first-period production quantity. The
set {L—1,L,L+1,...,T} is referred to as the regeneration set. Chand and Morton
[22] proposed a characterization for a minimal regeneration set, developed a proce-
dure for identifying it, and proved the following necessary and sufficient condition: T’
18 a forecast horizon if and only if every problem horizon in the minimal regeneration
set has a common optimal first-period production quantity. This stream of analysis

did not, in any manner, restrict the possible values of future demands.

The rest of this chapter is organized as follows. Section 3.2 formally introduces the
concept of an FH?, and develops the necessary and sufficient conditions for a problem
horizon T" to be an FH?. Section 3.3 discusses conditions under which an FH? implies
an FH°. We also analyze the impact on cost of the discreteness assumption. Section
3.3.3 discusses the results of a detailed computational study aimed at accessing the
usefulness of the IP approach, and quantifies the impact of the discreteness assump-
tion. Discrete forecast horizons for two variants of the dynamic lot-size model are

discussed in Section 3.4. Section 3.5 provides a summary of the chapter.

3.2 Forecast Horizons for Discrete Demands

Imposing discreteness on the future demands is essentially an attempt to exploit
practical restrictions on the values of potential demands. Forecast horizons obtained
by incorporating such additional restrictions are known as weak forecast horizons (see
[17]). This section investigates an important type of weak minimal forecast horizon
— a minimal forecast horizon assuming future demands to be integer multiples of ¢

where ¢ € RT.

There are two important reasons for the study of FH?. First, it is typical for practical
demand realizations to obey significant and known restrictions on the future de-
mands. The most elementary restriction is the granularity with which these demands

are measured. Most businesses have a basic minimal unit for measuring demand.
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For example, an oil refinery may quantify demand in the thousands of gallons, while
demand is integral for a tire manufacturer. In both these cases, the business is not
interested in considering demands that fall in between these discrete values. Thus,
a discrete forecast horizon suffices in these cases and there is no need to consider
a traditional forecast horizon. This seemingly minor restriction on future demands
has the ability to significantly reduce the length of a minimal forecast horizon, and
consequently reduce forecasting expense. Second, such a discretization in the future
demands allows us to develop new necessary and sufficient conditions for minimal
forecast horizons; these conditions can be easily posed as optimality /feasibility prob-
lems for 0-1 integer programs. An important benefit of this approach is that it does
not depend explicitly on the structural properties of the forecast horizon problem
being studied. Consequently, it becomes relatively easy to extend the approach to
investigate a wider class of forecast horizon problems.

q
min’

In order to compute FH we first need necessary and sufficient conditions for a
period 1" to be an FHY. As before, the demands in the first T" periods are known and
assumed to be dy, ds, . . ., dr, respectively. Let Q1(«) be the set of optimal first-period
production quantities for a (1" + 1)-period problem with a demand of « for period

T+ 1. Chand and Morton [21] prove the following result:

The optimal production plan in the first T periods of any N-period problem with N >
T+ 1 can be found by solving the (T + 1)-period problem with demands dy,ds, ..., dp
in the first T periods and some appropriately selected demand o € Ry in period T+ 1.

This result holds for arbitrary (i.e., nonnegative real-valued) future demands and it is
more general than is needed here. For the discrete demand case, the only additional
observation, which follows trivially, is that it is enough for a to be an integer multiple
of g. Clearly, if & > £, then Q;(ar) = Q1(0). The necessary and sufficient conditions

for T to be a forecast horizon can be stated as follows.

Theorem 3.2.1 T s a forecast horizon assuming that future demands are integer

multiples of q (i.e., T is an FH?) if, and only if, Nacfo,9,2q,....5q9) @1(c) 7# 0, where 7 is
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the smallest integer such that mq > %

Proof: T is clearly not an FHY if Nuegoq.24,..701Q1() = B: there is no common
optimal first-period decision for the demands 0, ¢, 2q, ..., g in period T"+ 1. To prove
sufficiency, assume that Nacfo,q,2q,...50) @1(c) # 0. We know from [21] that every
instance of an N-period problem with N > T'+1 has the same first-period production
as a (T + 1)-period problem with an appropriately chosen T+ 1-period demand .
We consider two cases: (i) if @ > £, then Qi(a) = Q;(0) and the result follows

immediately, and (ii) if a < %, the result follows from the hypothesis. O

Given that T"is an FHY, let X7 = Nagfo,9,24,...7q} Q1 () # 0. Then, x? is the set of first-
period decisions guaranteed to be optimal for every N-period problem, N > T + 1,
and all vectors of demands d; =0 (mod ¢),i =T + 1,..., N. In order to formulate an

integer program to test whether 7" is an FHY, we use the following additional notation:

Mrpi1(a) :  the optimal cost for a (7' + 1)-period problem when the
demand in period T+1 is . Note that o = 0 is essentially
the T-period problem.

A, . the set of demands for period T'+ 1, indexed by «,
Ae{nxgn=0,1,2 .7}

(

1 if a setup is required in period j in

X7 : the problem with period T" + 1 demand «;

\ 0 otherwise.

Q : the quantity produced in period j in the problem with
period T+ 1 demand «.

I¢ :  the inventory carried over from period 7 to 7 + 1 in the

problem with period 7"+ 1 demand «a.
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Problem DLS-T-NSC: Find a feasible solution to the following set of constraints:

T+1 T+1
E:kX“4—§:hJ — Mra(a)  a €A, (3.1)
T+1
O d)Xy>QF 1<j<T+1, ach, (3.2)
9, 1QF—d;—19=0 1<j<T, ach, (3.3)
2,1 QF—a—18=0 j=T+1, acA, (3.4)
Q—QY =0 a#d;a,a €A, (3.5)

813, =0 ach,
19,Q5>0 1<j<T+t1, ach,

Xee{0,1} 1<j<T+t1, ach,

Constraints (4.3) ensure that only those solutions with cost equal to the optimal cost
are considered. Constraints (4.5) enforce the standard DLS restraint that production
cannot occur without a setup. Constraints (4.6) and (3.4) enforce the conservation
of material flows. Constraints (3.5) force that all demand values, a € A,, have a

common optimal first-period production quantity.

The minimal forecast horizon FHYZ . is the smallest value of T for which the formu-

min

lation above has a feasible solution.

Example 1: We illustrate the computation of discrete minimal forecast horizons

FH? . for g = 1,1/2 and 1/4, and compare them with the continuous forecast horizon

min

FHO . . The demand vector for the first 23 periods is

(14,15,12,12,12,19,5,5,18,17,13,11,7,12,6,8,15,19, 7, 8,11,12, 12).

Figure 3.1 shows the minimal forecast horizons as the setup cost &k varies from 10 to

60; without loss of generality, the holding cost h = 1. For k = 20, observe that FH}

min

< FH2 < FHY! — FHO, Also, note that the discrete forecast horizon FH/ |

TN Tmn main® Tmn

identical to FHC . 0

min'
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25

—e— FH1 =
—e -FH112 AT
- s -FH1/4

20 4 —=—FHO

Minimal Forecast Horizon

T T
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Figure 3.1: The impact of discretization on the length of the minimal forecast horizon
as a function of the setup cost k. The initial demand data is as described in Example 1.

3.3 Relationship Between FH? and FH°

If T is an FH°, then it follows that T is an FH? for any ¢ > 0. Therefore, we have
FH? . < FHY

It is easy to see that the converse does not always hold; in Example 1

above, for k = 20, FHY2 < FHO Next, we examine conditions under which FH?

— FHO .
min

Intuitively, there are two considerations that enable us to derive such
conditions: (i) the behavior of the optimal cost with respect to the granularity ¢ of
a discrete forecast horizon, and (ii) the sensitivity of the last regeneration period in
an optimal solution to perturbations in future data. Next, we illustrate results under
both cases. We start by defining additional notation required for the results in this

section.
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3.3.1 Sufficient conditions under which FH? = FH"

37

(T + 1)-period DLS problem with demand d; in period 4,7 = 1,...,T

and demand « in period 7'+ 1.

optimal cost of P(«) with the first-period production fixed at x.

optimal cost of P(«) with the last regeneration period I.

last regeneration period of an optimal solution of P(«).

largest last regeneration period among all optimal solutions of P(a).

Problem P(«) with the last regeneration period set to L{«).

{(Ha)+ 1,1(a)+ 2, ..., L(a + q)}.

C(0)=Ci(a) (0)

(G—Ua)h

7> la) + 1.

set, of optimal first-period production quantities for Problem P(«)

with the last regeneration period set to L(«).

optimal cost of an [-period problem, [ < T+ 1.

cost, of producing in period [ + 1, for periods I + 1,....,T + 1 for P(a).

For a € A, define S, = {dy,dy + da, ...,Z;il di,zle d; + a}. Then, S, is the set

of all possible first-period production quantities in an optimum solution to Problem

P(a). Recall from Section 3 that x? = Nacfo,g,2q,...7q Q1 () 7# 0 if T'is an FH.

Theorem 3.3.1 Let period T' be an FH?. If

min C(Q1 = z,a) > Mry(a+q) YV a €A,

z€Sa\x4

then period T is an FH°.
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Proof: For Problem P(a + 6¢),0 < 0 < g, let an optimal first-period production be
x1 & x7. Clearly, 1 € S,y5. Thus, 1 € S,15\x? Then,

Mr(a+6) = C(@Q1 =21, +6) > C(Q1 = 21, ).

Now, C(Q1 = z1,a) > zer?al&q C(Q1 = z,a) > Mpy(a+ q). The last inequality
follows from the hypothesis. Thus, if 21 € x7, then the cost of the optimal solution to
Problem P(a+9),0 < 0 < q, is at least as large as Mp1(a+ ¢). Further, an optimal
solution to Problem P(« + ¢) is feasible for Problem P(« + 6). Also, since T is an
FH?, there exists a solution of Problem P(«a -+ ¢) with first-period production in 9.

The result follows. O

Theorem 3.3.1 is related to the following result in [103]: if period T is a production
period in a T-period problem, T > 2, then T is a forecast horizon. We offer the
following explanation: for any (7" + 1)-period problem P(a+ 6),0 < § < g, € A,
if an optimal first-period production z; € x?, then the proof of Theorem 3.3.1 shows
that Mp1(a+68) > My, 1(a+q). The reverse inequality, My, (a+4d) < Mr1(a+q),
follows trivially. Thus, Mp,1(a+0) = Mp,1(a+ q). This can happen if, and only if,
period T+ 1 is a production period. Thus, we have a situation where period 7"+ 1
is a production period in a (7" + 1)-period problem. We can, therefore, conclude that
T 4 1 is a forecast horizon. Since T is an FH?, the additional knowledge that the
T-period problem has an optimal first period production quantity in x? helps reduce

the length of the forecast horizon to T

The following result was used in [22] without a formal proof. Since we could not

locate a proof in the literature, we provide it here for completeness.

Theorem 3.3.2 Consider two problem instances P(ay) and Plag) with as > a1 and
holding cost h > 0. Given an optimal solution to Problem P(ay) with last regeneration
period l(an ), there exists an optimal solution to Problem P(as) with a last regeneration

period l{ag) > l(az).
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Proof: The optimal costs of Problems P(a;) and P(ag) can be stated as follows:
Mryi(an) = Myayy + v(l(en), T + 1, 1) (3.6)

My i1(a2) = Mygas) + 7l (a2), T + 1, a0) (3.7)

A feasible solution to P(a;) can be obtained from an optimal solution to Problem
P(ag) by producing a; units, instead of aw, in the last period. Let the cost of this
solution be C'(c). Then,

C'(a1) = Miay) +7(lae), T + 1, 01) (3.8)

Similarly, a feasible solution to P(az) can be obtained by substituting the optimal
solution for problem P(a;) and producing as units, instead of «g, in the last period.

Let the cost of this solution be C'(az). Then,
C'(o) = Myayy +7(l(an), T + 1, ag). (3.9)

From (3.9) and (3.6):

C'(a2) — My ya(on) = (a2 — ar)(T' = l(an))h

C'(ag) = My (o) + (g — oy (T — l{aq))h (3.10)
From (3.7) and (3.8):

Mria(az) — C'(ar) = (@2 — ar )(T — laz)) o

MT+1(042) = C/(Oél) + (042 — Oél)(T — l(Oég))h (311)

It follows from definition that C'(ag) > My 1(ag). Substituting from (3.10) and
(3.11), we have

Mrii(an) + (ag — o )(T —l{aa))h > C'ea) + (@2 — an)(T — l(az))h
= Mri1(aa) + (a2 — a)(T = lea))h > Mria(ar) + (a2 — an))(T = l(az))h
S (@ — ) (T = o Dh > (s — an)(T — Ias))h
= (0g — on)(l(az) = l{ar))h = 0
Slas) > o).
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Corollary 3.3.3 L(«), the largest last regeneration period among all optimal solu-

tions of Problem P(a), is non-decreasing in «.

Proof: From Theorem 3.3.2 it follows that if I(«;) = L(ay), then l(ag) > L(ay).

Therefore, L(ag) > I(ag) > L(ay). O

Theorem 3.3.4 Let period T be an FH? with an optimal common first-period pro-
duction x* € x?. For any a € A,, let [(«a) denote the last regeneration period of
an optimal solution of Problem P(«) with first-period production z*. If I'(a,j) >
a+q,Vj € R(a), then x* is also a common optimal first-period production for Prob-

lems Pla+0),0<4§ <gq.

Proof: I(a,j) = 2072@9 > 44 g > a+6 V) € R(e). Using Cjla +0) =

C5(0) + (@t )T+ 1=+ DI and Cigap(+8) = Cigay(0) + (e + O[T+ 1= (1) + D],

we get,
{Cj(a 4 6) = (a+ O)(T — j)h} - {C’l(a)(a 4 6) = (a+ 6)(T — l(a))h} > (a+ 8)(j —l(a)h
Simplifying, we have Cj(a + 0) > Cyu)(a + ¢). By Corollary 3.3.3, we have
l(a) < Lla) < L(a+90) < Lla+q).
Therefore, L(a + d) € R(a) and we have
Mrpy1(a+0) = CLars)(a +6) > Cyay(a +9)

Therefore, I(a) remains an optimal last regeneration period for P(a + §). Conse-
quently, at least one optimal solution to every problem instance P(a + ¢), 0 < 4§ < ¢

has a first-period production Q)7 = z*. The result follows. a.

Corollary 3.3.5 If period T is an FH? and I'(a, ) > a+ q,Vj € R(«) for all points
a € Ay, then period T is an FH°.
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Proof: Follows immediately from Theorem 3.3.4. O

Example 2: Corollary 3.3.5 can be illustrated using the following numerical example.
Let the setup cost k& = 25, and the holding cost h = 1. The demand for the first

few periods is the same as in Example 1. Using the integer program DLS-T-NSC in
1/2

Section 3, it can be shown that 7' = 15 is an FH,;, (i.e., ¢ = 3). The hypothesis of

Corollary 3.3.5 (i.e., the condition I'(cr, j) > a + ¢,Vj € R(«) for all points « € A,)

holds for ¢ = 1. Table 3.3.1 shows the relevant computations. Thus, 7' = 15 is an

2
FHO.

Table 3.1: Computations to illustrate Corollary 2, Section 4.1. The relevant problem
data is provided in Example 2.

| a | min; e pea) T(e, 5) | a+tq || a | min; e pa) (e, 7) | a+tgq || a min; e pa) T(e, 5) | a+gq |
0.00 6.25 0.50 8.50 15.50 9.00 17.00 30.50 17.50
0.50 6.25 1.00 9.00 15.50 9.50 17.50 30.50 18.00
1.00 6.25 1.50 9.50 15.50 10.00 18.00 30.50 18.50
1.50 6.25 2.00 10.00 15.50 10.50 18.50 30.50 19.00
2.00 6.25 2.50 10.50 15.50 11.00 19.00 30.50 19.50
2.50 6.25 3.00 11.00 15.50 11.50 19.50 30.50 20.00
3.00 6.25 3.50 11.50 15.50 12.00 20.00 30.50 20.50
3.50 6.25 4.00 12.00 15.50 12.50 20.50 30.50 21.00
4.00 6.25 4.50 12.50 15.50 13.00 21.00 30.50 21.50
4.50 6.25 5.00 13.00 15.50 13.50 21.50 30.50 22.00
5.00 6.25 5.50 13.50 15.50 14.00 22.00 30.50 22.50
5.50 6.25 6.00 14.00 15.50 14.50 22.50 30.50 23.00
6.00 15.50 6.50 14.50 15.50 15.00 23.00 30.50 23.50
6.50 15.50 7.00 15.00 15.50 15.50 23.50 30.50 24.00
7.00 15.50 7.50 15.50 30.50 16.00 24.00 30.50 24.50
7.50 15.50 8.00 16.00 30.50 16.50 24.50 30.50 25.00
8.00 15.50 8.50 16.50 30.50 17.00 25.00 30.50 25.50

For Problem P(«), our next result characterizes the situation when a positive pertur-
bation in «, the demand in period T+1, leaves the last regeneration period unchanged.
This result then leads to another sufficiency condition (Corollary 3) for an FHY to be
an FH. Before we present the result, we discuss two simple cases where the existence

of a positive perturbation is trivial.

Let period T be an FH?. As before, let {(«) denote the last regeneration period of an

optimal solution of Problem P(«).

lva=0andi(a)= T — 1: As mentioned earlier, Problem P(0) is a T-period
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problem. If [(0) = T — 1, then period T is a production period. Consequently,
T remains a production period for any N-period problem, N > T -+ 1 [103].
Therefore, period T is an FHC.

2. a>0and (o) =T: For a > 0, Problem P(«a) is a (T + 1)-period problem. If

l(a) =T, then T + 1 is a production period. Therefore, in the optimal solution
to any problem P(a), @ > «, period T + 1 remains a production period [103].
Note that the existence of a demand « in period T + 1 for which I(«) = T is
guaranteed; e.g., {(a) = T fora > £. Let & = min{a : a € Ay, [(a) = T'}. Thus,
if all problem instances P(a), 0 < a0 < &, have a common first period production

in set x?, then period T is an FH?. Let Ayq = {a:a € A,,0 < a < a}.

Theorem 3.3.6 Given an optimal last regeneration period l(«) for Problem P(a), a €
Aga, there exists a number 0(c) > 0 with (o + 8) = l(a)¥ 0 < 8 < 6(e) if, and only
if, {a) = L(a).

Proof: The cost of Problem P(a + §) with the last regeneration period fixed to I(«)
can be written as

Cl(a)(Oé + (5) = Cl(a)(Oé) + (5(T — Z(Oé))h

In order for period I(«) to remain an optimal last regeneration period, the following
inequality has to be satisfied.
Cila+0) > Cyay(a +9) Vj e {l(a) +1,l(a) +2,..,T}

Cy() + 6(T — j)h = Ciwy(@) + 5(T = 1(a)h Vj € {I(a) + 1,1(a) +2, .., T}
Ci(a) = Cyy (@)

>5 Ve {l(e)+1,0a)+2,..,T}

(J — Ua))h
Let
~ . C(Oé) — Cl(a) (Oé) }
) = J
%) = et BB 4,1y { G — i)k

By construction, {(z) = I(a) for all z € [a, o + 6(a)]. If [() = L(c), then Ci(o) >
Cie)(@), and hence () > 0. Conversely, if 6(c) > 0, then Cji(a) > Cyayla) ¥V j €
{l(@) = 1yl(@) 250 T}, This implies () = L(«). O
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Corollary 3.3.7 Let T be an FH? with Naen,, O1(L(e)) # 0 and ¢ < &
= minaeAq’d{g(oz)}. Then, T 1s an FH°.

Proof: If Nuea, ., Q:(L(a)) # 0, then using L(c) instead of I(a) in the proof of
Theorem 3.3.6, we have 0(a) > 0 Vo € A, It follows that 5 > 0. Since g < g,
Theorem 3.3.6 implies that for all & € A,4, any Problem P(a + 6),0 < § < g,
has an optimal solution with the first-period production in x?. This observation,
together with the remarks immediately before Theorem 3.3.6, implies the existence
of an optimal first period production in x? for all Problems P(«), o > 0. Therefore,

period T is an FH°. O

Example 3: Theorem 3.3.6 and Corollary 3.3.7 can be illustrated using the following
example. Consider a four-period problem (i.e., T = 4) with demands 2, 1, 4, 2,
respectively in the four periods. Let the setup cost £ = 5, and the holding cost
h = 1. For this data, T = 4 is a FH! (i.e., ¢ = 1) with x? = {3}. Tt is easy to verify
that for all integer fifth-period demands greater than two, period five is a production
period. Thus, & = 3, and A, s = {0,1,2}. For each a € A, 4, Table 3.3.1 shows the

computation of 5.

Table 3.2: Computations to illustrate Theorem 3.3.6 and Corollary 3.3.7.

o[l ]  “Tme® i
of 2 6 (j=3) 6
1] 2 [[5(G=38,15@G=4)]| 1.5
2 2 [ 4G=3,10G=4 | 1

Thus, ¢ =1 =0 = minae/\q’d{g(oz)}. Also, Naea, 4 O1(L(a)) = {3}. Therefore, from
Corollary 3, we have that T — 4 is an FH°.

Theorem 3.3.8 For period T' to be an FH°, it is necessary that Naea, Q1 (L(a)) # 0

for any ¢ > 0.
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Proof: Let period T be an FH°, and let * be a common optimal first-period pro-
duction quantity for all N-period problems, N > T. For q¢ > 0, we know that T is

also an FHY.

Consider o € A,. Suppose Problem P(a, L(«r)) has an optimal solution with first
period production @; # x*. This implies, since T is an FH°, that there exists an
optimal solution to Problem P(a) with last regeneration period I(«) # L(«). That
is, Problem P(«) has at least two optimal solutions with different last regeneration
periods. Then, there exists ¢ > 0 such that every optimal solution of Problem P(«a+¢)
has L(a) as the unique last regeneration period [22]. Since T is an FH?, Problem
P(a + ¢, L(a)) has * as an optimal first period production quantity. Therefore,
P(a, L(«)) also has z* as an optimal first period production quantity. Since the

choice of « is arbitrary, z* € Ngea, O1(L(e)). O

Note: For ¢ > 0, the condition Ngey, 01 (L()) # 0 implies that T is an FH?. The

converse, of course, is not necessarily true.

The expressions in the hypotheses of Corollaries 2 and 3 are easy to compute. We
explain the computation of two fundamental quantities: (i) Cj(«), the optimal cost of
Problem P(«) with last regeneration period [/, can be computed by setting X;,; = 1
and X; =0 for [ +2 < j < T + 1, in the formulation DLS-T of Section 2, (ii) For
Problem P(«), the largest last regeneration period L(a) can be found by first finding
the optimal cost Mr,1(«) and a corresponding last regeneration period I(a). Then,
L(a) is the largest period &, I(a) < k < T such that fixing the last regeneration period
to k produces an optimal solution of cost My, i(a). Again, formulation DLS-T can

be used for all these computations.

q
min

0

3.3.2 The impact on cost of using FH' . in place of FH;

Unlike a continuous forecast horizon, a discrete forecast horizon does not guarantee
the existence of optimal decisions over the decision horizon for all non-negative future

demands. Therefore, the impact on the cost resulting from using discrete forecast
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horizons (instead of a continuous forecast horizons) becomes an important measure

to assess their utility in practice. Specifically, we pose the following question:

Let T be an FHY,q > 0, with an optimal common first-period production x* € 1.
Then by definition, it is optimal to choose x* as a first-period production quantity if
future demands (i.e., demands during period T + 1 and later) are in integer multiples
of q. If, however, future demands do not satisfy this restriction, then how does the
cost of a solution that uses x* as a first-period production quantity compare with the

optimal cost?

The relevance of this question is clear: if we can guarantee that, for any N-period
problem, N > T + 1, the cost of using * as a first-period production quantity is
reasonably close to the optimal cost, then the shorter discrete forecast horizon (i.e.,
T') becomes a reasonable substitute for the longer continuous forecast horizon. Our
analysis below shows that this is indeed true. We start by explaining the concept of

an e-forecast horizon, first used in [87].

Let P(dY,dY, ;) denote an N-period problem, N > T with (known) demand
di' = (d1,da, ...,dr) in the first T" periods, and demand d},; = (dry1,dri2, ..., dy) in

periods T+1,T+2, ..., N. Let My(d?, J%rl) denote the optimum cost of P(dT, J%rl).

Definition: Period T is an e-forecast horizon, denoted as e-FHY, if for every N-period
problem, N > T + 1 and all vectors of demands dy,; € §RJJ\: ~T there exists at least

one solution with z* as the first-period production quantity, and with cost at most

(1 +e)Mn(d, dyf ).

For ¢ = 0, note that the above definition reduces to that of the classical forecast
horizon. Clearly, if period T is a forecast horizon (or, equivalently, a 0-FH?), then T

is also an FH?. We are interested in examining the reverse relationship.
Question: If T is an FHY, then for what ¢ is 7 an ¢-FH®?

Suppose 1" is an FH?. Note that
Mria(a) < Mpp(a+9) < Mra(atq), 0<0<¢q, acA,

This follows because any feasible solution to P(a + ¢) is feasible for P(a -+ ¢), and any
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feasible solution to P(a + 0) is feasible for P(«). Our analysis uses an upper bound

Mr1(atq)

on the ratio Mrii(@) -

An Upper Bound on the Ratio

Mry1(atq)
Mri1(c)

and Further Analysis

Let 7" be an FHY. For a € A,, consider the following two cases:

1. There is an optimum solution to P(«) with only one setup (i.e., the mandatory

setup in the first period). Since T is an FHY, it is easy to see that a single setup
can occur only if &« = 0. Then, the unique optimal first-period production for
all Problems P(a), @ € A, is .., di. Therefore, My 1(0) = k+h 3¢ ,(i—1)d;,
and Mrpyq(a) = Mpy1(0) + k for o € A, \{0}. Thus,

Mry1(q) Mrp1(0) + K
MT+1 (0) MT+1 (0)

J— 1 + T . ,
Bt b — 1)d;

% = 1 for @ € A,\{0}. In general, we have % < 1+ e,

where ¢; =

and

k
___k_____ Note that ¢, < 1.
Frha T (i-yd, o b er =

. There exists an optimum solution to P(«a) with p, > 2 setups. In this case,
Mr () > pok

Given a feasible solution to Problem P(«), a feasible solution to P(a + ¢) can
be obtained by producing an extra ¢ units in the period T+ 1. Therefore,
Mrpii(a+ q) < Mpyi(a) + k. Then, we have

My (et g)

Mrpi(a+q) = } My ()

IN

} Mz (0)

A
HI
+
—N—
g‘w
-~
——
| — |
S
+

—

2

a1,
where €5 = P > 2.
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Let ¢* = max{¢;, ¢§}. We have thus proved the following result.

Theorem 3.3.9 LetT be an FHY. For any a € A,, the optimum cost of P(a+q) is at

most (14 ¢*) times the optimum cost of P(a), where ¢* = max{er, i} < 1,¢5 < %

Finally, we note the following for all @ € A,:

1. Any solution to P(a + q) is feasible for P(a + 6),0 < § < q.

2. Since T is an FHY, there exists a solution of value My 1 (a+ q) with first-period

production quantity z*.

Let €3 = maxaea, €5; note that e; < %, and let ¢ = max{e, %}

Also, for a > £, 0;(a) = 91(0) (see Section 3). Thus, for any o € R}, we have
demonstrated a feasible solution to P(«) with first-period production quality z* such
that the cost of the solution is at most (1 + €)My 1(«). We formally state this result

below.

Corollary 3.3.10 If T is an FHi, then T is a (1 + ¢)-FH® with

_ 1 1
c— e { T+ S, (i-1)d;? 2 }

. q : - 1 : _ 0
Notes: Let T be an FHY. Then, since ¢; = TEST S, < 1, T is a 2-FH".

Furthermore, T is a 1.5-FH° if 22‘22(2 — 1)d; > £. For example, for the DLS model

with unit initial demand considered in [24], T"is a 1.5-FH® if 7'~ /2%, or higher.

3.3.3 Computational Experience

Throughout this section, we use minimal forecast horizons assuming integer future

demand (i.e., FH}

min

) to illustrate our results for discrete forecast horizons. Our

computations address the following issues:
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1. The practicality of using integer programming (IP) for computing discrete and
continuous forecast horizons. We use the IP formulation in Section 3.2 for com-
puting discrete forecast horizons; classical forecast horizons are computed using
the IP formulations presented in [35]. The computation of discrete horizons for

variants of the dynamic lot-size problem is discussed later in Section 3.4.

2. The impact of discreteness (of future demands) on the length of the minimal
forecast horizon. As mentioned earlier, the reduction in this length, with respect
to the length of the continuous minimal forecast horizon, can imply significant
savings in expenses related to forecasting. We measure the magnitude of this

reduction via a detailed computational study.

3. The impact on cost of using a discrete minimal forecast horizon. Our analysis in
Section 3.3.2 establishes an upper bound on the increase in total cost from using
the shorter discrete minimal forecast horizon instead of the longer continuous
forecast horizon. For realistic data, we compute the exact value of the upper
bound and show that this increase is much smaller than the worst-case guaran-
tee; therefore, we believe that discrete horizons can be acceptable substitutes

for continuous horizons in practice.

The Test Bed

We start by describing the test bed. We consider stationary as well as non-stationary

demands.

Stationary demand:

The problem instances are generated the same way as discussed in Section 2.5.1 in

chapter 2.

Non-stationary demand:

The problem instances are generated the same way as discussed in Section 2.5.2 in

chapter 2.
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The integer programming formulations were solved using the MINTO (version 8.1)
programming library [79]. All the computations were carried out on a Pentium IV

computer (2.4 GHz, 512 MB RAM) running Red Hat Linux 7.2.

Computation Times

For stationary demand, the minimum forecast horizons, with and without the as-
sumption of integer future demand, and the corresponding computation times are
shown in Table 3.3.3. For non-stationary data, the minimum, maximum, and median
minimal forecast horizons along with the average computation times are reported in
Tables 3.3.3. Each row in Table 3.3.3 corresponds to the average statistics over the
11 instances generated with G = 1.00 and S = 0.50. Observe that, on average, the
problems are solved within an hour of computation time. It is, therefore, reasonable

to conclude that using integer programming is an attractive option for practitioners.

Table 3.3: The minimal forecast horizon and the minimal forecast horizon assuming
integer future demand for unit initial demand.

k FHY . | Time (sec.) || FH] , | Time (sec.) % Reduction
FHp—FHo
(—gpmin) X 100

10 20 1.01 16 2.58 20.00%

11 17 0.92 13 1.79 23.52%

12 13 0.86 13 1.77 0.00%

13 18 1.03 13 2.08 27.7%

14 24 1.73 19 5.62 20.83%

15 30 34.58 24 14.99 20.00%

16 26 7.39 21 9.95 19.23%

17 21 1.16 16 5.24 23.80%

18 21 1.42 16 3.92 23.80%

19 28 8.53 16 4.82 42.85%

20 35 216.63 28 139.55 20.00%

21 42 402.11 32 805.23 23.80%

22 37 245.83 29 617.34 21.62%

23 31 179.32 25 855.13 19.35%

24 25 10.45 23 703.30 5.71%

25 32 203.71 24 312.29 25.00%
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Table 3.4: The minimal forecast horizon and the minimal forecast horizon assuming
integer future demand: non-stationary demand with G = 1.000 and S = 0.50.

k Min. | Max. | Med. Time Min. | Max. | Med. Time

(sec.) (sec.)
10 2 4 3 0.05 2 4 3 1.21
15 3 13 6 0.64 3 9 5 2.68
20 3 17 7 1.34 3 17 5 4.13
30 4 18 9 2.29 4 9 6 3.87
50 8 20 12 3.18 8 20 11 5.68
75 12 23 15 3.94 10 18 14 126.51
100 15 22 17 35.32 13 21 16 1129.34
150 16 32 24 192.44 16 29 20 2496.12

Reduction in Forecast Horizon

For stationary demand, Figure 3.2 shows the relationship between the minimal fore-
cast horizons, with and without the integrality assumption, and the setup cost; the
corresponding data is in Table 3.3.3. For non-stationary demand, this relationship is
shown in Figure 3.3; the corresponding data is in Table 3.3.3. The average reduction
in the length of the minimal forecast horizon resulting from the integrality assumption

is around 20% for stationary demand, and around 15% for non-stationary demand.

Behavior of discrete horizons with demand growth and variability

For non-stationary data, Figure 3.4 is a plot of the median forecast horizon, assum-
ing integer future demand, as a function of the setup cost for the three values of
S (0.15, 0.50, 1.15) and G set equal to 1.005. For each of the three values of 5,
the median minimal forecast horizon typically increases with the setup cost. For a
given setup cost, the median forecast horizon is typically lower for higher values of
S. While a precise mathematical explanation seems difficult to prove, we offer the
following intuitive explanation: a higher value of the demand variability parameter S
indicates a larger fluctuation in the demand, thereby increasing the probability of a

large demand, and consequently reducing the forecast horizon. As expected FH! . is

1

smaller than JLHS. for each parameter setting. Also note that FH! . is less sensitive

min
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45

—— Minimal forecast horizon

40 + —=— Minimal forecast horizon assuming
integer future demand

Forecast Horizon

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Setup Cost

Figure 3.2: Relationship between the setup cost and the minimal forecast horizon for
stationary demand, with and without the integrality assumption on future demand —
unit demand case.

to changes in S. With S fixed at 0.50, Figure 3.5 presents the relationship between
the median minimal forecast horizon and the setup cost for the three values of the
growth parameter G: 0.995, 1.000, and 1.005. As with Figure 3.4, the minimal fore-
cast horizons typically increase with the setup cost. The other observation is that
the median forecast horizon is larger for smaller values of G. When G is large, the

demands get increasingly larger in the later periods and as a result, there is a better

1

chance of a smaller forecast horizon. As with Figure 3.4, FH, .. tends to be smaller

than FHO

min

for each parameter setting, and also less sensitive to changes of G.

A summary of the results for all combinations of the setup cost k, the growth parame-
ter G, and the variability parameter S, is reported in Tables 3.3.3-3.3.3. Tables 3.3.3-
3.3.3 show the results for continuous forecast horizons, while Table 3.3.3-3.3.3 show

the results assuming integer future demand.
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Table 3.5: Minimal forecast horizons for non-stationary demand: flat demand pattern

(G = 1.000).
S$=0.15 S$=0.50 S=1.15

Min. | Max. | Med. Time Min. | Max. | Med. Time Min. | Max. | Med. Time

(sec.) (sec.) (sec.)

10 2 6 3 0.56 2 6 3 0.21 2 7 3 0.16
15 9 14 8 1.02 2 9 5 0.92 2 8 4 0.73
20 4 23 11 1.11 2 9 4 1.03 2 7 4 0.89
30 3 20 13 1.78 6 15 8 1.52 2 13 6 1.32
50 11 27 19 2.42 5 21 17 1.96 8 14 6 1.61
75 12 24 15 3.52 7 22 15 2.51 6 11 8 1.94
100 15 25 21 35.62 9 17 14 14.24 5 16 9 22.12
150 20 35 28 142.51 16 32 24 125.71 7 28 16 122.16

Table 3.6: Minimal forecast horizons for non-stationary demand: increasing demand

pattern (G = 1.005).

S$=0.15 S$=0.50 S=1.15

Min. | Max. | Med Time Min. | Max Med. Time Min. | Max. | Med. Time
(sec.) (sec.) (sec.)

10 2 8 5 0.83 2 5 3 0.61 2 6 4 0.43
15 3 15 7 0.99 2 5 3 0.78 2 6 4 0.59
20 3 11 8 1.31 2 8 5 1.04 2 7 5 0.81
30 5 14 6 2.17 6 19 14 1.41 4 12 7 0.95
50 6 19 12 3.12 5 23 16 1.94 5 11 8 1.48
75 13 29 17 6.23 8 25 15 5.12 4 15 6 3.82
100 16 26 21 121.52 9 22 16 103.42 3 17 13 89.41
150 18 31 25 452.92 12 27 19 326.12 2 23 16 173.4

Table 3.7: Minimal forecast horizons for non-stationary demand: decreasing demand
pattern (G = 0.995).

S$=0.15 S$=0.50 S=1.15

Min Max. | Med. Time Min Max. | Med. Time Min. | Max. | Med. Time
(sec.) (sec.) (sec.)

10 4 8 5 1.13 2 6 4 1.04 4 7 6 0.82
15 4 14 8 1.52 2 7 5 1.31 2 6 5 0.93
20 6 16 12 1.89 4 12 6 1.42 7 9 6 1.18
30 5 15 10 2.41 7 13 8 1.72 8 13 10 1.39
50 8 25 17 6.27 7 21 14 2.18 6 24 17 1.92
75 14 28 18 22.17 6 22 17 3.62 13 25 16 2.04
100 18 34 24 153.82 12 28 25 24.73 14 23 18 11.04
150 23 36 27 843.23 10 35 25 632.68 10 28 24 428.22
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Table 3.8: Minimal forecast horizons assuming integer future demand: flat demand
pattern (G = 1.000).

S$=0.15 S$=0.50 S=1.15

Min Max. | Med Time Min. | Max. | Med Time Min. | Max. | Med. Time

(sec.) (sec.) (sec.)

10 2 4 3 1.21 2 3 2 1.32 2 5 3 1.01
15 7 9 5 2.68 2 5 2 1.41 2 4 2 1.89
20 3 17 5 4.13 2 7 3 2.02 2 6 2 1.43
30 4 9 6 3.87 3 10 6 2.14 2 8 4 1.80
50 8 20 11 5.68 5 16 11 4.07 4 8 5 1.93
75 10 18 14 126.51 6 14 11 4.86 4 8 5 2.26
100 13 21 16 1129.34 9 13 8 704.14 5 12 7 323.14
150 16 29 20 2496.12 12 25 16 941.13 5 23 7 530.19

Table 3.9: Minimal forecast horizons assuming integer future demand: increasing
demand pattern (G = 1.005).

S$=0.15 S$=0.50 S=1.15

Min. | Max. | Med Time Min. | Max Med Time Min. | Max Med. Time
(sec.) (sec.) (sec.)

10 2 5 3 1.46 2 3 2 0.90 2 4 3 0.83
15 3 10 6 4.18 2 4 3 1.11 2 6 3 0.94
20 3 7 5 4.32 2 4 3 2.07 2 6 4 2.10
30 3 9 7 4.01 4 15 6 2.02 2 8 4 2.22
50 6 13 8 7.03 5 16 7 5.22 2 8 3 2.31
75 7 21 13 421.56 5 15 10 11.13 2 11 5 2.39
100 11 19 14 2312.40 5 10 8 280.33 2 11 7 163.11
150 13 24 15 3013.29 5 22 17 2046.20 2 14 8 491.43

Table 3.10: Minimal forecast horizons assuming integer future demand: decreasing
demand pattern (G = 0.995).

S$=0.15 S$=0.50 S=1.15

Min Max. | Med Time Min. | Max. | Med. Time Min. | Max. | Med. Time
(sec.) (sec.) (sec.)

10 2 5 3 1.63 2 4 4 0.83 2 5 2 0.81
15 3 7 3 3.08 2 5 3 1.26 2 5 2 1.01
20 3 6 3 2.07 2 8 4 1.80 4 7 4 1.33
30 4 7 4 2.97 4 10 7 2.41 3 8 5 1.80
50 5 16 8 11.13 4 12 8 4.79 4 17 11 4.36
75 10 23 13 291.10 6 14 8 129.13 8 14 10 2.76
100 10 25 22 2418.50 6 25 11 703.49 5 21 16 484.12
150 16 32 24 4205.17 7 28 22 3489.19 8 19 14 852.18

www.manaraa.com




54

30

—a— Minimal forecast horizon

25 1 — a— Minimal forecast horizon

assuming integer future
demand

Median Values of

Forecast Horizons
= N
(9] o

[N
o
!

10 30 50 70 90 110 130 150
Setup Cost

Figure 3.3: Relationship between the setup cost and the median values of forecast
horizons FH® . and FH! . - non-stationary demand case

min min

Impact on cost due to the integrality assumption

The issue of the impact on cost from using FH. . in place of FH? . was addressed

in Section 3.3.2. Let T' be an FH?. Then, for a € A,, we showed that % <
1

k and €5 = oo where p, is the maximum
(2

kth Y o(i—1)d;’
number of setups in an optimal solution to Problem P(a) with at least two setups. As

1+ max{er,e5}. Here, ¢ =

defined in Section 3.3.2, €* = max{ey, €5 }. The argument presented in Section 3.3.2 in
fact shows that if T'is an FHY, then T is a (1 + ¢4,)-FH?, where €y, = max{e*;a € A,}
represents the theoretical upper bound on the increase in cost. Given the granularity
q and the demands for the first T' periods, the value of ¢4, can be easily computed.
However, for realistic data, the actual values of €; and €§ are typically much smaller
than their theoretical upper bounds. Let ¢,y = max %; a € A, Under the
assumption of integer future demand (i.e., ¢ = 1), Table 3.3.3 lists the theoretical
and actual values of € (e, and €4, respectively) for a sample of 10 instances. The

results indicate that e, is in fact much smaller than eg,. Also, €, tends to decrease

with an increase in FH!

min’
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Figure 3.4: The median values of forecast horizons, assuming integer future demand,
as a function of setup cost and demand variability.

27
/- FH1-5=0.50, G=0.995
24 1+
—K— FH1-5=0.50, G=1.000
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Forecast Horizons
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Figure 3.5: The median values of forecast horizons, assuming integer future demand,
as a function of setup cost and demand growth.
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Table 3.11: The Theoretical and actual upper bounds on the cost of using FH} ; in
place of FH? . : non-stationary demand with G = 0.995 and S — 0.15.

main®

|Pr0blem N0.| k |FH}mn| €th | €act |

1 10 2 0.500 | 0.217
2 20 5 0.500 | 0.235
3 30 8 0.333 | 0.182
4 40 11 0.333 | 0.161
5 50 15 0.333 | 0.136
6 60 18 0.333 | 0.011
7 70 21 0.250 | 0.026
8 80 26 0.250 | 0.054
9 90 33 0.250 | 0.084
10 100 41 0.250 | 0.073

3.4 Extensions to the Basic Dynamic Lot-Size model

The structured, constraint-based nature of the integer programming approach makes
it easy to incorporate additional constraints and to address multi-product variants
of the DLS problem. We illustrate this simplicity on two significant extensions. The

forecast horizons considered assume integer future demand.

3.4.1 Dynamic Lot-Sizing in the Presence of a Warehouse Capacity Con-

straint

Consider a situation where the inventory at the end of a period needs to be stored
in a warehouse with capacity, say, W. The dynamic lot-size problem, therefore, has
an additional constraint that specifies the ending inventory at each period to be at
most W. Note that, for this warehouse-capacity constrained problem, if the demand
in a period exceeds W or exceeds L%J, then that period is a production period (i.e.,
production must occur in that period). The proof of the following result is similar to
that of Theorem 3.2.1; we omit the proof. The notation is the same as that defined

in Section 3.2.

Theorem 3.4.1 T is an FH (assuming integer future demand) for the warehouse-

capacity constrained D LS problem if, and only if, Nyegor s, .. min(w; 5]y} Q1 (a) # 0.
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A corresponding formulation can be obtained by adding the following constraints to
Problem DLS-T-NSC
[5<W,1<j<T;a€A, (3.12)

where A = {0,1,2, ..., min(W, | %])}.

3.4.2 A Two-Product Dynamic Lot-Size Problem with Individual and

Joint Setup Costs

In this section we extend the necessary and sufficient conditions discussed in Sec-
tion 3.2 to a two-product variant. Let Product ¢, ¢ = 1, 2, refer to the two products.
The per-unit holding cost is hy (resp. hg) for Product 1 (resp. Product 2). If pro-
duction is limited to a single product in a period, say Product ¢, then the setup cost
incurred in that period is k; + K (i=1, 2). If both products are produced in a period,
the setup cost is k1 + ko + K.

Let Q1(aq,ae) be the set of optimal first-period production quantities for a (7" + 1)-
period problem with a demand of «; for Product 4, ¢ = 1,2, in period 7"+ 1. If
o; > LKhLZkZJ,Z = 1,2, then Ql(Oél,Oég) = Ql(0,0)

Theorem 3.4.2 T is a forecast horizon (assuming integer future demand) if, and
only if
Nareyed Qi(ar, az) £ 0, where A = {(an, a2) [{(an < [F5E2]) OR (az < [552])}}.

Proof: The necessity is trivial. To prove sufficiency, assume that N, ay)er @1(a1, a2) 7
(. We know that every instance of a N-period problem with N > T + 1 has the same
first-period production as a (1" + 1)-period problem with an appropriately chosen
T + 1-period demands, a; and aq, for the two products [21]. If (o, a0) € A, the
result follows from the hypothesis. Otherwise, Q1(ay, az) = Q1(0,0), and the result

follows. .

For a given planning horizon 7', the following formulation tests whether or not 7" is a

forecast horizon:
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A s (o, ) [{ar < LKhlelJ OR ay < LKth?J}} We index A
by a.

My 1(a) : the optimal objective function value for the (T + 1)-
period. problem with period T+41 demand a. We use
a = 0 to denote the T-period problem.

e

1 if a setup is required for Product ¢ in period j in

X5 : the problem with period T + 1 demand «;

\ 0 otherwise.

&
ij

the quantity of Product ¢ produced in period j in the

problem with period T-+1 demand «.

I3 :  the inventory of Product 7 carried over from period j to
j + 1 in the problem with period 7'+ 1 demand .

(

1 if at least one product is produced in period j in

Z3 : the problem with period T"+ 1 demand a;

\ 0 otherwise.

dij : the demand for Product ¢ in period j, j = 1,2, ..., T.
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Problem TP-T-NSC: Find a feasible solution to the following set of constraints:

T+1 2 T+1 2
SN XG5+ KZ3) +> > hid = Mrya(a)
§=1 i=1 §=1 =1

T+1

(Z dzr)Xza] 2 QZ
r—j
Iy + Q5 —diy — I =0

L5+ Qi — & T = Iy = 0

= =/
o a
il [ 0

2

ZED IR
i=1
2

78 >05) X3
i=1

Iz%? I'afT+1) =0

I% =0
Iij7 1% 2 0

X e{0,1}

ach (3.13)
1<j<T+lLacA (3.14)
1=1,2
1<j<T, acA, (3.15)
i—1,2.
j=T,achAi=1,2  (3.16)

1<ji<T+1lacA (3.18)
1=1,2

1<j<T+1l,achA, (319
1=1,2

achi=12 (3.20)
a=0,i=1,2 (3.21)
1<j<T+l,acehi=1,2
1<j<T+l,acehi=1,2

Constraints (3.13) ensure that only those solutions with cost equal to the optimal cost

are considered. Constraints (3.14)-(3.17) and (3.20)-(3.21) are similar in flavor to the

constraints in Problem DLS-T-NSC. Constraints (3.18)-(3.19) ensure that Z* = 1 if

either Xf‘j or Xg‘j is 1.
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3.4.3 Computational Results for the Two Variants

Assuming integer future demand, we summarize our experience with computing min-
imum forecast horizons for the two variants discussed above. Table 3.4.3 (resp.
Table 3.4.3) shows the results for the warehouse-capacity constrained (resp. two-
product) DLS variant. For all problem instances, demand was generated by setting
the growth and variance parameters to their median values: G = 1.00 and S = 0.50

(see Section 3.3.3).

1

Table 3.4.3 summarizes the results of computing FH,, .. for the warehouse-capacity
constrained variant. As in Section 3.3.3, the setup cost k was allowed to have eight
values, ranging from 10 to 150. The warehouse capacity W was allowed to have
three values: 0.4k, 0.6k and 0.8k. For each parameter setting, 11 problem instances
were generated; each row of Table 3.4.3 corresponds to the average statistics over
these 11 instances. Table 3.4.3 summarizes the results of computing FH. . for the
two-product variant. The joint setup cost K was allowed to have five values: 2, 4,
6, 8 and 10. Each of the individual setup costs k1 and ko was allowed to have five
values: 0, 0.25K,0.50K,0.75K and K. The holding cost for the first product h; was
set to 1 and the holding cost for the second product was allowed to have two values:

1 and 3. As before, each row of Table 3.4.3 corresponds to the average statistics over

1

the 11 instances generated for each combination of the parameters. Note that FH, ..
typically decreases with a decrease in the warehouse capacity: in general, a smaller
warehouse capacity results in more production periods, and consequently a smaller
forecast horizon. For example, production occurs in each period in the extreme case
of zero warehouse capacity and, hence, each period is a forecast horizon. Similarly,
FH} . decreases with a decrease in either the individual or joint setup cost. Figure
3.6 plots the decrease in the length of FH! . with a decrease in the joint setup cost

min
K.
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Table 3.12: Forecast horizons, assuming integer future demand, for the warehouse-
capacity constrained dynamic lot-size problem: non-stationary demand with G =
1.000 and S = 0.50.

Warehouse Capacity W

k 04xk 0.6k 0.8k
Min. | Max. | Med. Time Min Max. | Med. Time Min Max. | Med. Time
(sec.) (sec.) (sec.)
10 2 4 3 0.89 2 4 3 0.73 2 5 3 0.91
15 2 5 3 3.01 2 4 3 2.12 3 7 4 2.42
20 2 5 4 3.43 3 7 4 3.16 3 9 6 3.94
30 3 7 5 4.11 5 15 7 4.09 5 20 7 5.21
50 7 32 10 193.14 11 26 15 63.45 8 18 14 5.50
75 8 13 10 201.17 11 26 19 158.33 12 26 19 131.69
100 10 26 15 1211.38 12 28 21 1706.75 12 30 22 1863.43
150 10 36 15 1854.23 16 28 22 1987.41 16 31 24 2016.56

3.5 Concluding Remarks

This paper presents an analysis for the class of discrete forecast horizons obtained by
assuming that future demands are integer multiples of a fixed positive real number.
We use the dynamic lot-size problem to illustrate our analysis. Important structural
results presented in this paper include (i) a characterization for a period to be a
minimal discrete forecast horizon, (ii) sufficient conditions under which a discrete
forecast horizon implies a continuous forecast horizon, and (iii) the impact on cost
from assuming discrete future demands. We show, through an extensive computa-
tional study, that integer programming provides an efficient approach to compute and
analyze discrete forecast horizons. Finally, we address two variants of the dynamic
lot-size problem — a capacity-constrained warehouse scenario, and a two product DLS
problem with joint and individual fixed costs — to demonstrate the simplicity of ex-

tending our approach.

This Chapter concludes our discussion on Forecast Horizons. In the next Chapter we
look at the problem of traffic grooming in optical networks. We formulate the traffic
grooming problem as a mixed-integer program. We prove that problem is NP-Hard.

The solution method we use is an heuristic method using column generation.
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Table 3.13: Forecast horizons, assuming integer future demand, for the two-product
dynamic lot-size problem with individual and joint setup costs: non-stationary de-

mand with G = 1.000 and S = 0.50.

hi | ho k1 ko K Min. | Max. | Med. Time

(RK) | (%K) (sec.)
1 1 0 0 2 3 2 0.4
1 1 25 25 2 7 4 31.2
1 1 50 50 2 11 4 49.1
1 1 75 75 3 10 6 121.7
1 1 100 100 2 4 10 7 241.3
1 3 0 0 2 4 2 3.1
1 3 25 25 4 12 4 4.5
1 3 50 50 6 13 5 14.2
1 3 75 75 7 13 8 109.2
1 3 100 100 10 16 12 184.6
1 1 0 0 2 3 2 0.3
1 1 25 25 2 11 9 124.2
1 1 50 50 2 13 9 145.1
1 1 75 75 4 15 10 1938.1
1 1 100 100 4 6 16 11 2017.7
1 3 0 0 2 6 3 5.0
1 3 25 25 4 16 11 8.4
1 3 50 50 6 21 17 45.2
1 3 75 75 8 29 21 904.4
1 3 100 100 8 33 25 934.8
1 1 0 0 2 3 2 0.4
1 1 25 25 2 11 8 934.1
1 1 50 50 4 14 9 1031.0
1 1 75 75 5 16 11 2412.2
1 1 100 100 6 5 16 12 2398.3
1 3 0 0 2 5 3 102.1
1 3 25 25 7 21 10 234.1
1 3 50 50 6 24 20 957.4
1 3 75 75 8 26 22 1005.3
1 3 100 100 8 35 29 1928.3
1 1 0 0 2 5 3 0.5
1 1 25 25 3 11 8 1742.1
1 1 50 50 6 14 8 3029.9
1 1 75 75 6 16 12 4352.2
1 1 100 100 8 6 16 14 5072.1
1 3 0 0 2 7 4 164.0
1 3 25 25 6 29 21 299.2
1 3 50 50 5 35 23 1084.2
1 3 75 75 10 37 32 1424.1
1 3 100 100 10 41 37 2331.5
1 1 0 0 2 7 3 1912.3
1 1 25 25 3 14 10 4124.2
1 1 50 50 3 16 10 4940.1
1 1 75 75 5 16 12 4103.0
1 1 100 100 10 5 17 15 5693.2
1 3 0 0 2 9 5 1002.9
1 3 25 25 6 29 25 1348.7
1 3 50 50 9 31 27 1902.3
1 3 75 75 9 39 34 2490.2
1 3 100 100 15 43 38 2993.1

www.manaraa.com



CHAPTER 4
A TRAFFIC GROOMING ALGORITHM FOR WAVELENGTH ROUTED

OPTICAL NETWORKS

4.1 Synopsis

We start by illustrating the Traffic Grooming problem with an example network
shown in Figure 4.1. The traffic routing problem is on a mesh-network with 7 nodes
and a link capacity of two lightpaths in each direction. Fach node consists of two

transmitters and receivers. The requested traffic connections are shown in Table 4.1.

Table 4.1: Example problem: Traffic connections required between pair of nodes.

Origin Node | Dest.Node | No. of connections requested
1 6 2
2 5 2
3 4 1
5 7 2
6 2 1

Figures 4.1(a) and 4.1(b) indicate (by dotted lines) two feasible routings of lightpaths.
The number corresponding to each lightpath is the number of requests carried by the
lightpath. The routing in Figure 4(a) allocates a total of 7 connection requests. Since
the capacity of link 3-4 is two, this routing is able to satisfy only one connection
request from node 1 to node 6. The routing shown in Figure 4(b) accommodates all

(i.e., a total of 8) connection requests.

In this chapter, we consider the problem of traffic grooming and routing in optical
mesh networks. The objective is throughput maximization subject to constraints on

the maximum link=load and the number of transceivers available at each node. We

64
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Routing (a

Routing (b,

—

Figure 4.1: A six node network with two transmitters and two receivers at each node.

develop a heuristic based on a column generation technique and verify the quality of
the heuristic solution through a upper bound computed using a Lagrangian relaxation.
We start by presenting a review of relevant literature in Section 4.2. In Section
4.3, we present the notation and a mathematical formulation for grooming in all-
optical networks with the objective of traffic maximization. We then describe the
column generation based algorithm. In Section 4.4, we provide a Lagrangian based
technique for attaining a tight upper bound on the objective. Section 4.5 provides a
computational study and discusses the performance of our solution procedure. Finally,

Section 4.6 concludes the study.

4.2 Literature Review

The traffic grooming and wavelength assignment literature has focused on a large

number of different objectives, such as network throughput maximization, minimiza-
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tion of blocking probability, minimization of the total number of wavelengths, min-
imization of total route distance and network cost, among others. We focus on the
objective of traffic maximization and therefore restrict our review of the literature to

this (and related) areas of research.

Our work is closest to that of Zhu and Mukherjee [110], who also provide mathematical
models and solution procedures for grooming in all-optical networks with an objective
of traffic maximization. While Zhu and Mukherjee [110]| consider both single and
multi-hop all-optical networks, they provide a greedy heuristic without any means of
evaluating the quality of the solution achieved. Further, the authors restrict their
attention to networks of a relatively small size of five nodes. While we focus only on
single-hop networks, the heuristic procedure we suggest in this work is different due

to the fact that it provides verifiably high quality solutions for large sized networks.

Zhu et al. [109] propose a generic network model for traffic grooming in heteroge-
neous mesh-networks. The model can be adapted for various objectives by using
different grooming policies such as the number of transceivers available, the num-
ber of wavelengths available and wavelength conversion capabilities. The authors
also address the problem of partial wavelength conversion capabilities and different
grooming capabilities at each node. They propose an integrated grooming procedure
and traffic selection scheme where connection requests are routed one request at a
time. For static grooming (i.e., when all the traffic demands are known in advance)
such a technique will be influenced by the order in which requests are routed. The
paper proposes two traffic request selection schemes, Least Cost First and Maximum
Utilization First. The Least Cost First scheme chooses the most cost-effective traffic
request under the current network state and routes it. The paper defines the cost of
a traffic request as the weight of the shortest path for routing the traffic on the corre-
sponding auxiliary network divided by the amount of the traffic ( which is computed
as the granularity multiplied by the units of the traffic). The Maximum Utilization
First scheme selects the connection with the highest utilization (the total amount of

the request divided by the number of hops from the source to the destination on the
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physical topology).

Hu and Leida [56] consider traffic grooming in combination with traffic routing and
wavelength assignment (GRWA). Their objective is to minimize the total number of
transponders required in the network. The paper presents an integer programming
(IP) formulation for GRWA. Further, they introduce a decomposition method to
divide the GRWA problem into two smaller problems - Traffic Grooming (GR) and
Wavelength Assignment, (WA). A relaxed 1P formulation of problem GR is solved
assuming that the lightpaths and their routes in the physical layer are given. For a
given solution to the GR problem, the WA problem is solved using a sequential node

coloring scheme.

Lee et al. [67] consider the routing and wavelength assignment problem with the
objective of minimizing the number of wavelengths used, and provide an algorithm
based on a column generation technique. However in existing optical networks, the
wavelength minimization is not a critical requirement because of two reasons. First,
the use of additional wavelengths has been found to only marginally increase the
overall network costs (Zang et al. [107]). Second, with the enhancements in technol-
ogy, the wavelength capacity of optical networks has dramatically increased in recent

years.

Mukherjee [75], presents a multi-commodity flow formulation to minimize the link-
load in GRWA. A randomized rounding technique is used to route the lightpaths.
This technique relies on the assumption that there can be at most one lightpath for
any source-destination pair. Also, limits on the number of transceivers at each node

are not considered.

Ozdalgar et al. [82] provide an algorithmic approach for routing and wavelength
assignment (RWA) in optical networks with full wavelength conversion. They address
the routing and wavelength assignment problem jointly. Their integer programming
formulation is based on multi-commodity network flows. The objective is to minimize
the link load in order to minimize blocking probability. By adding penalty function to

thesobjectivesstheyralso address the problem of infeasibility of the formulation when
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some nodes have only sparse wavelength conversion capability.

4.3 Problem Notation and ILP Formulation

Consider a network G=(N,A ), where N is the set of nodes (wavelength routed switches)
and A is the set of arcs which are directed fiber links between nodes. We make the

following assumptions:

1. Each arc consists of a single fiber link between nodes in a mesh topology; a link

corresponds to an edge of the network G.
2. If arc (4, j)cA, then arc (j,1)cA.

3. Each fiber link can carry up to C wavelengths (lightpaths). This is referred to

as the mazimum link load allowed in the network.

4. There is no wavelength conversion capability available in the wavelength-routed

switches at the nodes of the network.

5. Each node contains a pre-specified number of transmitters and receivers which

are tunable to any wavelength on the fiber.

6. We are given a set of connection requests where each such request is represented
by a tuple, [(4,7),q|. Herei,j € N are respectively the source and destination of
the connection and ¢ € @ = {1, 3, 12,48} is the type of the connection request.
If the connection type is ¢, the bandwidth requirement for the connection is OC-
q. Let o(q) be the bandwidth requirement of connection type ¢ € @ in multiples
of OC-1 (ie. 51.84 Mbps). We assume that a connection request between two
nodes is indivisible. That is, it must be routed in one single ligthpath and cannot

be divided into several lower speed connection requests and routed separately.

7. Each wavelength-routed switch has unlimited capacity to multiplex/demultiplex

channels. This implies that any number of lower speed connection requests of
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type ¢ € @ can be multiplexed (demultiplexed) to (from) a lightpath originating
(terminating) at that node. Fach lightpath however has a finite given capacity
M (e.g.: we assume lightpath capacity as OC-48 which is 48x51.84 Mbps or
2.5 Gbps).

8. Each communicating pair of nodes (i,7) can be considered to be a specific
commodity r € R. Hence for each such commodity there can be upto |Q|
different kinds of connection requests. Let nj, € Z* be the number of connection
requests of bandwidth OC-¢ (¢ € @) for commodity 7. A lightpath is therefore
a path for commodity r € R, which uses a particular wavelength of light for

transmission.

We can now formally define the traffic grooming problem as follows: we seek to assign
a set of lightpaths to each commodity r such that the bandwidth of communication

requests assigned to these lightpaths is maximized.

4.3.1 Multi-commodity flow formulation

In this section we provide a multi-commodity formulation for the traffic grooming
problem. For this, we need to aggregate demand requests d, for each commodity

r € R which are computed as follows:
d, = Z o(q).ny (4.1)
q€qQ

The aggregate demand d, represents the total bandwidth requirement for commod-
ity  in multiples of OC-1. For example, commodity r has the following demand
requests OC-1: 15, OC-3: 2,0C-12: 1 and OC-48: 1. Therefore, aggregate demand

for commodity 7 is;
d, =1Xx15+3x2+12x1+48x1 =281

Note that the number of lightpaths required to fully satisfy the demand d, = 81 is,

[jl\/t—ﬂ =piStE=2pwhere M = 48 is the capacity of a lightpath.
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We use the following notation for formulation of the traffic grooming problem.

Parameters

C : Link capacity in number of wavelengths (lightpaths)

R : Set of all commodities, R = {1,2,.... N|.(|]N| - 1)}

P, : Index set of all lightpaths in G for r € R. Note that,
two lightpaths could have identical physical paths,
in which case they would require distinct wavelengths.

. 1 if link (m,n) is on path pof r € R, (m,n) € A

" 0 otherwise

M : Capacity of one lightpath in number of wavelengths
(in OC-48)

d, . Aggregated demand for commodity r € R

T, : Number of transmitters at node u € N

RR, : Number of receivers at node v € N

RS : Set of commodities originating at node u € N

R¢ : Set of commodities terminating at node v € N

Decision Variables

frp . flow on p** path of commodity r € R

¥ 1 if path p € P, for commodity r € R is chosen
P

0 otherwise
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Problem Groom_MC: -

Maxzz frp (4.2)
reR p=1
S.t.
1P|
YD or X, < C Y(mn)eA (4.3)
reR p=1
frp < MX,,, YVreR VpeDb, (4.4)
|7
> fo < dn, VreR (4.5)
p=1
1P|
>N X, < TT,, VueN (4.6)
reR] p=1
1P|
> > X, < RR,, YveN (4.7)
reRd p=1
X, € (0,1), VieR VpeP, (4.8)
frp € Zy, VreR VpeP, (4.9)

The objective function maximizes the total traffic flow of all commodities. Con-
straint 4.3 ensures that the number of lightpaths supported by each link is limited to
C. Constraint 4.4 limits the flow supported by each lightpath to the capacity of the
lightpath. Constraint 4.5 enforces that for a commodity, the total flow over all light-
paths must be less than or equal to the total aggregated demand for the commodity.
Constraint 4.6 (4.7) limits the total lightpaths generated (received) by a node to total

transmitters (receivers) at the node.

The following properties of Groom_MC' enable us to solve the problem more effi-

ciently.

Property 1 Given a solution to Groom_MC', where total demand routed for com-
modity r is d, — Zp [rp, there always exists a feasible allocation of all original

connection requests [(4,7),q| (where each (i,7), pair is a commodity r € R),
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such that allocation is equivalent to d,. Given two numbers nq,ng € {Z1}, d,

can be represented as,

dr = 48n4 + 1y , T < 48, N1, Mo € {Z+}

There can be three possibilities:

1. d. =0
2. d, <d,
3. d,=d,

In case 1, no lightpaths are allocated to commodity r. In cases 2 and 3, if
the solution allocates x,x € {Z1} lightpaths to commodity r, then the total
bandwidth of the lightpaths allocated to this commodity (in multiples of OC-
1’s) is, 48x. Clearly if 48x > d,., the solution to problem Groom_MC satisfies
all original requests for commodity r, i.e. case 3. If 48y < d,, we are only
able to satisfy some subset of requests (i.e. case 2). Given the number yx, we
can see that the problem of allocating the original bandwidth requests of OC-q
(¢ € Q) using these lightpaths is similar to a simple bin-packing problem with
bin capacity 48 and item sizes {1,3,12,48}. In our case bin-capacity is an integer
multiple of the item sizes and the number of item sizes is fixed, therefore it is
possible to solve this bin-packing problem in polynomial time. Note that bin-
packing problem is solvable in polynomial time even when the number of item

size is arbitrary and the item sizes are integer multiples (Coffman et al. [29]).

Property 2 Since link capacity and demand at each node are integer valued, there
exist an optimal solution with integer flow values. Therefore, we can relax the

integrality constraint f,., € Z to f, > 0.

Proof: Consider Problem Groom_MC' with constraints (4.9) replaced by f,, >
0, Vir € R, Vp € P,.. Let S denote an optimal solution vector for this modified
problem corresponding to a corner point of the convex hull of feasible solutions. We

showthatvfrpeZypyr € R, Vp e P,.
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Since S is a feasible solution, it satisfies the following inequalities:

frp < Mer, VTER, vaPT
| Pr]
frp S dm Vor cR

p=1

Consider the following two possibilities for a commodity 7:

1. S contains exactly one non-integer flow, say f.;. In this case, since M and d,

are integers, we have

frl < MXrl

| P

|
frp < d,.

p=1
Hence, there exists ¢ > 0 such that increasing f.; to f., = f,1 + ¢ maintains the

feasibility of the solution. This contradicts the optimality of S.

2. S contains two or more non-integer flows. Consider two non-integer flows, say
fr1 and f.o. Note that, M > f.q1 and M > f.s. Let ¢ = min{f.1, fro, M —
fr1, M — fr2}. Keeping all other variables fixed, two feasible solution vectors
S1 and S; can be obtained by changing f.; and f.o as follows:

Solution S7: Increase f.1 by € and reduce f.2 by €,
(ﬂl = fr1+¢, f7/'2 = fr2 — 6)-
Solution Sy: Increase f.o by € and decrease f.; by e,

(fh=fn—cfa=frto.

It is easy to see that both S and S, are feasible solutions. However, S = %

This contradicts the fact that S is an extreme point solution. The result follows.

O

Next we will address the complexity of the problem Groom_MC'.
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Theorem 4.3.1 The recognition version of Problem Groom_MC' is NP-complete in

the strong sense.

Proof: Even et al. [39] proves that the directed two commodity integral flow prob-
lem is NP-complete in the strong sense.

Directed two commodity integral flow problem:

Instance: Directed network ¢ = (V, A), specific vertices s1,80,t1 and ¢y, capacity

c(a) € Z1 for each a € A, requirement Ry,Ry € Z7.

Question: Are there two flow functions fi,fs:A — Z; such that,

1. For each a € A, fi(a) + fa(a) < c(a),
2. Foreach v € V — {s,t} and i € {1,2}, flow f; is conserved at v, and

3. For i € {1,2}, the net flow into ¢; under flow f; is at least R;?

We can reduce problem Groom_MC' to the two commodity integral flow problem as
shown below. Consider the following instance of the problem Groom_MC'"

A connected directed network G = (V, A), link capacity c(a) = C for each a € A,
nodes s; € V and t; € V having R; transmitters and R; receivers respectively, and
nodes so € V and ty € V having Ry transmitters and Ry receivers, respectively. The
demand vector is,

(

Rl ifi:Sl,j:tl
driq Ry if4= 89,7 = 1o

0 otherwise

\

where, (i,7) — r € R, (i,j) € V, i # j. The demand is given in number of lightpaths.
The decision question is: Does there exists a solution with objective value > Ry + Ry?

The above restricted version of problem Groom_MC' is equivalent to directed two

commodity integral flow problem with link capacity C, si(s2) and t1(t2) being the
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source and terminal nodes of commodity 1(2) respectively, and commodity 1(2) having
a demand requirement, of R;(Ry). Clearly since the directed two commodity integral
flow problem is NP-complete in the strong sense, problem Groom_MC' is also NP-

complete in the strong sense. a.

4.3.2 Solving Problem Groom_MC

The previous section proved problem Groom_MC' is NP-Hard in the strong sense.
Hence, there is probably no polynomial algorithm to solve the problem optimally
(Garey and Johnson [45]). For example, Table 4.3.2 shows results of running the
problem Groom_MC' for 3600 seconds on nine problem instances, by using Cplex 8.1
solver on a Pentium 1V, 2.4GHz, 512 MB RAM computer. To find all the paths for

each commodity a simple depth-first search was used.

Typically, WDM-based all-optical networks are sparse when they operate over a wide
geographical area. Given this, a number of methods have been proposed by re-
searchers to emulate the topology of such networks. The general principle behind
these techniques is that of distributing vertices at random locations in a plane and
then adding edges between pairs of vertices based on a specific probability distri-
bution. For Table 4.3.2, the networks were generated by the procedure outlined in
Zegura et al., [108]. Specifically, we used the probability function, aeﬁ, which
relates edge probability to distance between edges. The probability of an edge in this
model decreases exponentially with the distance between the two vertices. Following
Zegura et al., [108], the parameters « and L was set at 0.06 and 141 respectively. The

variable d is the distance between the two nodes under consideration.

The columns 5 and 6 in Table 4.3.2 give the optimal solutions to Groom_MC and
its LP relaxation respectively. From the computational results, it is clear that on
average [P formulation Groom_MC' can only be solved for networks with a maximum
of 10 nodes within the specified time limit of 3600 seconds. In bigger networks (more

than 14 nodes), even the LP relaxation of the problem could not be solved within
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3600 seconds (Table 4.3.2). For example, LP relaxation for a twenty node network
problem given in Table 4.4.1 took more than five hours to solve. When the network
size increases the number of paths generated become prohibitively large. For example,
the 16 node network in Table 4.3.2 have a total of 37,821 directed paths. These paths
will introduce 5 x 37,821, (0,1) variables to the formulation. The last two columns
in Table 4.3.2, Groom_Agg and FSA, represent respectively the solution from an
alternative formulation and a proposed Feasible Solution Algorithm (FSA) that we

introduce later in the paper.

Table 4.2: Results for 3600 seconds runs by using CPLEX 8.1.

Problem | Network Size | Problem Size | | Objective Value |
Instance | No. Nodes | No. Links | Constraints | Variables | Results | Groom_MC | LP [ Groom_Agg | FSA |
1 6 7 1890 6210 Optimal 806 913 806 792
2 7 13 1921 7140 Optimal 1031 1206 1031 968
3 8 11 2043 8903 Optimal 1586 1781 1586 1507
4 10 16 14520 60001 feasible IP sol. 2392 2914 — 2266
5 12 22 18323 65731 No IP sol. — 5312 — 4126
6 14 29 18920 663901 No IP sol. — 6881 — 5062
7 16 33 19034 78181 No IP or LP sol. — — — 9143
8 18 41 20193 93858 No IP or LP sol. — — — 15214
9 20 56 21284 249231 No IP or LP sol. — — — 18006

Given the results in Table 4.3.2, our approach is to find an efficient heuristic pro-
cedure which can be used to get near optimal solutions in a reasonable time. Note
that, Problem Groom_MC' involves the establishment of lightpaths to facilitate rout-
ing of demand requests of the commodities. However, finding best possible routes
to generate these lightpaths is very difficult because the number of paths increases
exponentially with the network size. Therefore, we use a well known technique in
the literature - column generation - to generate these paths efficiently. The following
three sub-sections explain our solution approach in detail. Sub-section 3.2.1 describes
how to price out and choose profitable paths as possible candidates to support light-
paths. Following this, we describe the column generation procedure and a heuristic
algorithm to obtain solutions to Problem Groom_MC' in subsections 3.2.2 and 3.2.3

respectively.
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Pricing procedure

Consider the linear programming relaxation of Problem Groom_MC. We call this
Problem Groom_MCR. We associate non-negative dual multipliers Ay, g, v, & and
¢¢ for link capacity(4.3), lightpath capacity(4.4),commodity demand(4.5) and two
transceiver constraints(4.6 and 4.7), respectively. Let problem Groom_MCRD be the
dual of problem Groom_MCR. Hence, Groom_MC RD has the following constraints:

v

oy, + Uy 1, VpeP.,VreR (4.10)

> Anlih, - Mur+&+4¢f > 0, Vpe B, VreR (4.11)
V(m,n)eA

Y
o

Nans s Vs €0, (4.12)

where s and ¢ are the origin and destination respectively of path p.

The following procedure is used to solve Problem Groom_MCR. First, a restricted
version of Problem Groom_MCR (Groom_MCRR) is solved. This is done by taking
a subset of paths ¥ for each commodity. The initial set of paths are generated by
getting the shortest path for each pair of nodes (i.e. each commodity) and set these

shortest paths as the initial set in the column generation procedure.

For each solution to Problem Groom_MCRR(V), we price-out non-basic columns in

the following manner.

A path p for commodity r is potentially profitable if it satisfies the following two

inequalities:
l—v > p, peEb,TER (4.13)
Mpr =€ = ¢t > > Ak, pEP,TER (4.14)
V(m,n)eA

Where, s and ¢ are the origin and destination nodes respectively of commodity r € R.

The set of paths satisfying (4.15) below will be a superset of those satisfying (4.13)
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and (4.14).

MA=v)=&—=¢f > > A, peEP,reR (4.15)
V(m,n)eA

By simplifying (4.15) we can state that, a potentially profitable path for commodity
r satisfies (4.16).

((r) > L(r,j), peP,TeR (4.16)

where M(1 — v,) — €2 — ¢¢ = ((r) and > (mmyea MmO, = L(r, j) is the length of
path p with arc weights A,,...

We find the shortest path distance to each node pair ( hence, commodity) with link
weights Aypn.  If none of the shortest paths satisfy (4.16), there are no profitable
paths left to be added to W. Therefore we have an optimal solution to Problem
Groom_MCR.

Column Generation Procedure

Step 1 Find the aggregate demand d,. for each commodity r.

Step 2 Solve a restricted version of Problem Groom _MCR
(i.e., Problem Groom_MCRR(WV)), and let the basis obtained be S.

Step 3 Calculate shortest paths and check optimality of 3 for
Problem Groom_MC R using equation (4.16). If basis is optimal goto Step 6.

step 4 Identify profitable columns and add to the set of paths (¥) in
Groom_MCRR(V).

Step 5 Solve the modified Groom_MCRR(V) and get an improved basis.
Goto step 3.
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Step 6 Output solution to Groom_MCRR(V) and set of columns (V). End.

Note that the above procedure will result in a solution that optimally solves problem
Groom_MCR. If this solution is integral then it is also an optimal solution for
Problem Groom_MC. In general however, it is possible to obtain a good (but not
necessarily optimal) integral solutions by using the algorithm provided in the next

section.

Feasible Solution Algorithm

The optimal solution to the above column generation procedure finds a set of paths(W),
which can be used to support lightpaths. However, the solution may not be feasible
to Problem Groom_MC' because variable X,, may be non-integer. Therefore, to find
a feasible solution to Problem Groom_MC we limit the number of available paths
to the set W. Since, ¥ is a small fraction of all possible number of paths, the IP-
Problem Groom_MC'- can be solved quickly. We complete the algorithm by executing

the following two steps after the column generation procedure.

Step 7 Take the set of paths ¥ obtained in Step 6 to formulate a restricted version
of Problem Groom_MC' called Problem Groom_MC(¥ ).

Step 8 Solve Problem Groom_MC(V) to optimality.

This heuristic allocates a set of lightpaths to each commodity r € R. Since we
aggregate the original demand to d, it is clear from our discussion in section 3.1, that
a feasible disaggregated solution from this is easy to obtain. In general one way to
gauge quality of the solution to Problem Groom_MC(¥) would be to measure its gap
with the solution to Problem Groom_MCR. However, this gap may not necessarily
be very tight due to the presence of a duality gap for problem Problem Groom_MC.
In the next section, we therefore develop a technique to get tighter upper bounds for

the Problem Groom_-MC.
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4.4 Upper Bounding Procedure

The following formulation for the single-hop case is adapted from Zhu and Mukheerjee
[110]. Our modified formulation does not take into account wavelength assignment
for each light path. This modification ensures that Problem Groom_Agg is equivalent
to Problem Groom_MC.

Notation
Variables
gat 1 if #* request of bandwidth ¢ € Q bet. (4, §) is successfully routed
? 0 otherwise
where t = 1,2..,n and i = o.(r), j =d.(r), T € R
Vij : Number of lightpaths from node i to 7,7 = o.(r), j =d.(r), r € R
PY, No. of lightpaths bet. nodes (i, j) routed through fiber link, (m, k) € A
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Problem Groom_Agg:

subject to:

ij
Pmn

qt

IN

IN

IN

IN

TT;,, Vi

RR;, Vj

81

(4.17)

(4.18)

(4.19)

NPl ifkAig Vigk (mk)(kn) €A (420)

neN

0, Vi,j (mi)ecA
0, Vi,j (j,n)eA
Vij, Yi,j (i,n)eA
Vig, Vi,j (m,j)eA
C, Ym,n (m,n)€A

ViixM, Vi3
Z+
Z+

{0,1}

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)
(4.28)
(4.29)

The objective (4.17) is to maximize the total bandwidth (traffic) routed. Constraint

(4.18) limits the number of lightpaths beginning at node i(€ N) to the number of

transmitters at the node (7'7;). Similarly, constraint (4.19) limits the number of

lightpaths ending at node j(€ N) to the number of receivers at the node (RR;).

Constraint (4.20) is the lightpath continuity constraint. The constraint states that,
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for every lightpath between node ¢ and j entering an intermediate node k, an equal
number leave the node k. Constraint (4.21) says that zero lightpaths end at origin
node 4. Similarly, (4.22) says that zero lightpaths begin at destination node j. Con-
straint (4.23)(constraint (4.24)) limits the number of lightpaths originating (ending)
at node i(j) to V;;. Constraint (4.25) limits the number of lightpaths passing through
link (m,n) € A to the maximum link load C. Constraint (4.26) limits the bandwidth
allocated to nodes (7,7) to the capacity of the total lightpaths generated between
nodes (4, 7).

Theorem 4.4.1 The two IP formulations, Groom_MC and Groom_Agg are equiva-

lent when o(q) are integer multiples, where q € Q.

Proof: We prove the theorem by showing that, any optimal solution to problem
Groom_Agg can be converted into a feasible solution to problem Groom_MC and
vice versa. Let an optimal solution to Groom_Agg be Sff and the total number of
lightpaths allocated Zv{(i,j)e Nt} Vi;, where V;; is the number of lightpaths allocated
to node pair (7,7). We can find a feasible solution to Groom_MC by allocating the
same lightpath routing. This solution is feasible to Groom_MC because V;; is feasible

under the transceiver and maximum link-load constraints. The solution value of

Groom_MC' is;

Z ﬁp - Z O(Q)ngtv

q,t

where in this instance, commodity r is the node pair (4, 7). Since >_ frp is an integer
number we can easily convert the ) frp solution into the original demand requests

for node pair (7, j) as discussed in Property 1.

Similarly, an optimal solution to Groom_MC ( f;-p) can be converted to a feasible

solution of Groom_Agg (Sff) with,

> 0058 =Y fop V(i 5) € {N,q,1}.

q,t p

Therefore, the formulations Groom_MC and Groom_Agg are equivalent. O
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4.4.1 Lagrangian Relaxation

We relax constraints (4.19),(4.25) and (4.26) and multiply them by non-negative
Lagrangian multipliers 7;,c,, and 3;;, and include them in the objective function to

get the relaxed problem Groom_AggR.

Problem Groom_AggR:

MaxZo(q) xSferZozmn{C—ZP” }JrZBU{VU X M — Z ) x ST
m,n 2,7

+ Z iR — Z Vij}
subject to: (4.18), (120), (4.21), (4.22), (4.23), (4.24), (427). (4.28). (4.29).

Problem Groom_AggR can be decomposed into two sub-problems as shown below.

Sub-Problem 1

Maz )~ (1= By)olg) x S§ (4.30)
q,1,7,t

subject to: (4.29).

Solving sub-problem 1 is trivial. We assign Sff =1, V(g,t) to any (4, j) pair such that
(1 — Gi;) > 0. Otherwise we assign Sff = 0 V(q,1t).

Sub-Problem 2

Maﬂ?zoémn{—ngn}JrZ@j{Vij X M}+Z%~{—ZV1~]~} (4.31)

subject 1o+ (4.18), (4.20), (4.21), (4.22), (4.23), (4.24), (4.27),J (4.28)

Sub-problem 2 can be decomposed into separate problems for all commodities r € R

starting at node ¢ € V.
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Problem (i,*);

Maz — Z QP2+ Z (MBij — ;) Vi (4.32)
)

m,1,7

subject to:

Y Vy < TT; (4.33)
J
Y PS = > Bl ifk#ij Vik (4.34)
Y PE =0, Vj (4.35)
Y PE =0, Vj (4.36)
Y P = Vi, Vj (4.37)
Y PI = Vi, Y (4.38)
vV, € 2t (4.39)
P3¢ Zt (4.40)

Remark 4.4.1 The above decomposition scheme enables us to solve the Lagrangian
sub-problems very easily. Unfortunately, the bound given by the Lagrangian solution
and the LP relaxation solution are the same. This is due to the integrality property of
the sub-problems. Therefore, the subproblems are required to be strengthen by adding

some valid constraints.

Note that, the maximum number of lightpaths generated from node ¢ is T7; and

the maximum number of lightpaths received at node j is RR;. Furthermore, the

number of lightpaths needed to satisfy the demand from 7 to j is [jlw—ﬂ, where d;;

is the total aggregate demand from node i to j (dij = >__,0(q) X Sff). Also, the

maximum number of lichtpaths supported at each link is C. Considering all of these
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observations we can strengthen the upper bound of the Lagrangian relaxation by

adding the following constraints to the Problem (i,*).

‘/; .

J#i

Solving the (i,*)"" problem:

IN

min(RR;, [%

< C, VmneA

—|)7

Vit

(4.41)
(4.42)

The addition of extra constraints makes the Problem (i,*) difficult to solve. However,

with this extra effort in solving we obtain an improved upper bound. To solve the

Problem (i,*) optimally, we use CPLEX 8.1 MIP solver.

The sum of all solutions for (i,*) problems give the solution to sub-problem 2. Fur-

thermore, the sum of (3_, . @mnC + >, v;1RR;) and the solutions from sub-problem

1 and sub-problem 2 will give the solution to the Lagrangian relaxation problem,

Groom_AggR. We note that, this solution to problem Groom_AggR serves as an upper

bound to the solution of problem Groom_Agg and therefore problem Groom_MC.

We employ a subgradient optimization algorithm to update the Lagrangian multipli-

ers. Fisher [43], provides a detailed explanation of the subgradient procedure.

Table 4.3: Comparison of Heuristic, LP and Lagrangian solutions.

Problem | Nodes | Tranceivers | Link Capacity | Heuristic LP Lagrangian
1 20 12 2 438595 496020 496020
2 20 12 4 442646 523954 523954
3 20 12 6 457300 552003 552003
4 20 16 2 638568 991361 698300
5 20 16 4 642444 1035160 795167
6 20 16 6 655120 1037370 801202
7 20 20 2 697046 1256821 841252
8 20 20 4 702453 1269884 853495
9 20 20 6 764218 1143285 908733

Table 4.3 compares the heuristic solution, LP solution and Lagrangian solution for a

network with twenty nodes. It can be seen that when the number of transceivers are
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low the Lagrangian bound is very close to the LP relaxation solution. However, when
the number of transceivers increases, the Lagrangian gives a better bound than the

LP relaxation solution.

4.4.2 Wavelength Assignment

One cost component, of an optical network is the number of unique wavelengths needed
to accommodate demand. Our procedure provides a set of routes which are feasible
with regard to the maximum link load (C). To verify that the maximum number
of distinct wavelengths needed for this set of routes is not inordinately large, we
use a sequential network coloring approach given in Banerjee and Mukherjee [11].
Note that, this task of assigning wavelengths to a set of routes while minimizing the
number of distinct wavelengths needed is itself NP-hard (it is referred to as the node
coloring problem, see Garey and Johnson [45]). Hence, we use the aforementioned
sequential network coloring approach as a post-processing step once a good set of
routes are obtained. This post-processing step provides us with a measure W, which
is an upper bound on the maximum number of unique wavelengths needed for each

solution provided by our heuristic.

4.5 Computational Study

For all our computational experiments, we generate networks such that a path exists
between each pair of nodes. Following Zhu and Mukherjee [110], the traffic demand
OC-q was allowed to be any one of ¢ € @ = {1, 3,12}. Kach demand was generated
as a uniformly distributed random number between 0 and U, (U, € {16,8,2}), as
suggested by Zhu and Mukherjee [110]. A typical demand matrix for OC-12 requests
is shown in Table 4.5.

It has been observed that WDM-based all-optical networks operating over a wide
geographical area are sparse, with in/out-degree values ranging from 2-5 (Ajmon et

ali3]y Banerjee and Mukherjee [11], Jia [57|, Waxman [105]). A number of methods
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Table 4.4: OC-12 demands

Node

e M N R e I =~
= = e D N R =1 E=1
= o= ol ol ol o e
ol ol R = o= oo e
oo o|o|o|~| ol o
ol oo =R = o = o>
[NIR=1 R ] Kl Fal Y E I RN RS Y
| OO O RN PN — N
olo|o|lo|r v o~ ol
ol —lolv oo~ ol

| 0o| | | vr|i| o] 0| |

have been proposed by researchers to emulate the topology of such wide-area, sparse
networks (Baroni and Bayvel [13], Jia [57], Jia et al. [58], Waxman [105]). We
utilize the procedure first developed in Waxman [105] to generate a realistic network

G(N, A):

1. Generation of Nodes: Three different values for |N| were considered: 20,40

and &0.

2. Generation of Arcs: We assume that if two nodes u and v are adjacent,
there exists a unidirectional fiber link from u to v and a separate unidirectional
fiber link from v to u [59]. Therefore, throughout the arc generation process

whenever we add an arc (u,v) to the network, we also add the reverse arc (v, u).

(i) To ensure that the network is connected, we first find a minimum spanning
tree (using FEuclidean distances as arc weights) and add the arcs corre-

sponding to the tree.

(ii) Arcs between the nodes are added until the average in-degree (or equiva-
lently, average out-degree since we always add bi-directional arcs) in the
network reaches a specified maximum value. Three different values of the
average in-degree are considered: 2, 4 and 6. We define networks of degree

2, 4 and 6 respectively as sparse, medium and dense.
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3. Transceivers: We vary the number of transceivers at each node from 0.6 x | V|,

to 1.0 x |N| in steps of 0.2|NV].

4. Link capacity: We consider link capacities (C) of 2,4,and 6 lightpaths for each
fiber.

Thus, there are a total of 81 problem settings (3 values each for the number of
nodes (N), the average degree, the number of transceivers (1") and the link capacity
(C). For each setting, we generated 10 problem instances. Hence, a total of 810
problem instances were created on which our heuristic solution procedure was run.
The heuristic was coded in C++ (using the CPLEX version 8.1 programming library)
and all computations were carried out on a Pentium IV computer (2.4 GHz, 512 MB

RAM) running Windows XP.

4.5.1 Discussion

Tables 4.5-4.7 depict the computational results for our heuristic solution procedure
for the 810 problem instances generated as described in the previous section. Each
row in these tables corresponds to a summary of 10 randomly generated problem

instances. The following notation are required to read the results.
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Notation:

| V| Number of nodes in the network.
T Number of transceivers at a node.
C Maximum link load.

Network Type

Average degree of the network

(degree € {Sparse, Medium, Dense}).

D : Percentage of total demand routed in terms of throughput.
U : Average transceiver utilization.

L . Number of lightpaths established.

Gap __ Lagrangian ULpfzz fZZZsJLower bound . 10)0.

w : Average number of distinct wavelengths required for a
feasible solution.

C'PU time Running time in seconds for the algorithm, including the

Lagrangian relaxation and wavelength assignment procedure.

It can be seen that our column generation heuristic is successful in obtaining high
quality routes for large networks . We note that, the maximum gap between our
feasible solution and the Lagrangian upper bound is small and typically ranges from
0% - 13%. The average gap is significantly lower and is on the order of 2% to 9%
(see Table 4.8). With the increases in number of transceivers , the volume of traf-
fic routed also increases and the gap between the heuristic solution and Lagrangian
solution widens. One reason for this is when the volume of traffic increases, the LP
relaxation and Lagrangian relaxation values tend to become very close. Further, our
heuristic is successful in satisfying a significantly large fraction of the total demand

(i.e., connection requests). Also dense networks route more traffic than sparse net-

works: Thisvis'to beexpected, as dense networks imply more paths are available to
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Table 4.5: Summary results for |N|=20. The average gap varies between 1.3% to
9.3%.

T | C | Network Type D Gap 114 CPU time U L
max | min | avg max | min | avg
12| 2 Sparse 7381 50 | 00 | 1.3 |30 | 120 | 93 | 114 | 100 | 93
12| 2 Medium 766 | 7.3 | 3.0 | 55 | 3.0 | 130 | 90 | 105 | 100 | 95
12| 2 Dense 768 | 4.7 | 1.5 | 33 |37 129 93 | 11.5 | 100 | 97
12 ] 4 Sparse 741 1107 | 3.3 | 70 | 5.0 | 144 | 94 | 10.3 | 100 | 97
12 | 4 Medium 76.8 | 57 | 0.5 | 42 | 51 | 132 | 74 | 9.5 | 100 | 98
12 ] 4 Dense 772 74 | 25 | 47 |56 | 143 | 82 | 11.8 | 100 | 98
12| 6 Sparse 743 | 74 | 24 | 52 (69| 130 93 | 104 | 100 | 97
12| 6 Medium 769 | 82 | 3.6 | 63 | 7.2 | 123 | 84 | 12.0 | 100 | 97
12| 6 Dense 773 | 84 | 1.8 | 48 | 82| 163 | 95 | 11.3 | 100 | 98
16 | 2 Sparse 7931101 | 23 | 43 | 3.1 | 15.0 | 10.3 | 13.2 | 94.1 | 150
16 | 2 Medium 8341 98 | 3.1 | 56 | 35 | 17.3 | 10.5 | 14.0 | 99.0 | 158
16 | 2 Dense 843 | 114 | 5.0 | 85 | 4.1 | 159 | 10.1 | 124 | 100 | 160
16 | 4 Sparse 798 1 95 | 1.3 | 30 | 5.0 | 169 | 11.0 | 11.7 | 94.7 | 150
16 | 4 Medium 838 95 | 1.7 | 5.1 | 5.0 | 19.8 | 109 | 16.3 | 99.5 | 158
16 | 4 Dense 844 | 11.8 | 3.3 | 80 | 6.0 | 183 | 10.4 | 15.3 | 100 | 160
16 | 6 Sparse 798 | 11.0 | 48 | 7.1 | 7.7 | 17.3 | 10.8 | 13.9 | 94.7 | 158
16 | 6 Medium 839 | 128 | 5.2 | 85 | 7.9 | 173 | 10.5 | 14.3 | 99.6 | 158
16 | 6 Dense 848 | 135 | 5.0 | 82 | 9.1 | 18.0 | 10.3 | 14.8 | 100 | 150
20 | 2 Sparse 87.1 | 9.7 | 27 | 45 | 32| 192 | 11.2 | 16.9 | 82.7 | 164
20 | 2 Medium 939 | 11.1 | 3.8 | 5.7 | 3.3 | 204 | 11.0 | 173 | 89.2 | 178
20 | 2 Dense 945|102 | 36 | 5.8 | 4.3 | 194 | 10.9 | 16.0 | 89.7 | 178
20| 4 Sparse 875 | 89 | 1.9 | 40 | 6.0 | 203 | 11.5 | 16.2 | 83.1 | 166
20 | 4 Medium 941|116 | 42 | 70 | 6.0 | 214 | 11.9 | 17.0 | 89.3 | 178
20| 4 Dense 950 | 11.8 | 4.7 | 66 | 6.7 | 19.8 | 12.0 | 16.3 | 90.2 | 180
20 | 6 Sparse 877 | 133 | 54 | 93 | 76 | 225 | 12.2 | 17.3 | 83.3 | 166
20| 6 Medium 941 97 | 3.8 | 5.8 | 80 | 205 | 11.3 | 16.8 | 89.3 | 178
20 | 6 Dense 951 | 100 | 26 | 66 | 9.0 | 21.3 | 12.0 | 15.9 | 90.3 | 180
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Table 4.6: Summary results for |N|=40. The average gap varies between 2.2% to
9.2%.

T | C | Network Type D Gap 114 CPU time U L
max | min | avg max | min | avg
24 | 2 Sparse 693 | 43 | 25 | 31 |40 | 364 | 29.1 | 32.8 | 100 | 480
24 | 2 Medium 705 | 48 | 2.8 | 34 | 42| 371 | 27.7 | 35.0 | 100 | 480
24 | 2 Dense 716 | 45 | 1.2 | 29 | 5.2 | 35.0 | 29.2 | 31.1 | 100 | 480
24 | 4 Sparse 694 | 69 | 44 | 51 | 6.0 | 36.3 | 286 | 30.6 | 100 | 480
24 | 4 Medium 7231 49 | 3.6 | 39 | 6.1 | 37.6 | 29.0 | 31.3 | 100 | 480
24 | 4 Dense 728 | 62 | 1.8 | 43 | 6.0 | 36.3 | 30.2 | 32.5 | 100 | 480
24 | 6 Sparse 695 | 96 | 40 | 75 | 82 | 346 | 27.9 | 33.7 | 100 | 480
24 1 6 Medium 740 45 | 1.8 | 2.2 | 8.0 | 37.6 | 289 | 309 | 100 | 480
24 | 6 Dense 750 | 64 | 3.2 | 45| 9.9 | 38.0 | 30.0 | 32.2 | 100 | 480
32| 2 Sparse 879 | 72 | 56 | 64 | 4.2 | 47.0 | 34.1 | 40.2 | 98.8 | 627
32| 2 Medium 893 | 75 | 6.0 | 6.8 | 5.0 | 46.6 | 36.0 | 38.3 | 100 | 640
32| 2 Dense 919 | 80 | 64 | 73 | 5.2 | 45.0 | 34.0 | 41.5 | 100 | 640
321 4 Sparse 880 | 65 | 49 | 56 | 6.7 | 471 | 32.8 | 40.0 | 99 | 633
32 | 4 Medium 90.1 | 80 | 6.5 | 7.3 | 6.0 | 46,5 | 33.1 | 41.5 | 100 | 640
321 4 Dense 927 68 | 5.2 | 6.1 | 7.2 | 471 | 31.6 | 39.7 | 100 | 640
32| 6 Sparse 881 | 56 | 3.1 | 45 | 82 | 464 | 33.6 | 40.0 | 99.1 | 633
321 6 Medium 910 6.2 | 4.7 | 5.5 | 88 | 483 | 34.2 | 41.0 | 100 | 640
32| 6 Dense 933 | 48 | 3.2 | 41 | 95 | 441 | 35.0 | 40.5 | 100 | 640
40 | 2 Sparse 970 | 10.7 | 64 | 82 | 4.0 | 51.8 | 36.1 | 47.0 | 87.3 | 696
40 | 2 Medium 982 | 81 | 6.9 | 70 | 42 | 50.7 | 37.5 | 44.6 | 88.3 | 704
40 | 2 Dense 987 | 74 | 5.0 | 6.1 | 5.0 | 48.8 | 355 | 45.6 | 88.8 | 704
40 | 4 Sparse 971 | 114 | 74 | 92 | 5.3 | 49.6 | 38.1 | 47.1 | 87.3 | 696
40 | 4 Medium 982 | 69 | 4.7 | 58 | 6.5 | 504 | 36.9 | 44.6 | 88.3 | 704
40 | 4 Dense 987 | 71 | 47 | 5.8 | 80 | 499 | 37.2 | 454 | 88.8 | 704
40 | 6 Sparse 979 | 74 | 5.0 | 65 | 84 | 51.1 | 37.0 | 47.9 | 88.1 | 704
40 | 6 Medium 9821 10.2 | 80 | 91 | 9.0 | 50.1 | 38.1 | 49.7 | 88.3 | 704
40 | 6 Dense 9891 9.0 | 3.7 | 74 | 93 | 51.1 | 37.2 | 46.9 | 89.0 | 712
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Table 4.7: Summary results for |N|=80. The average gap varies between 3.2% to
8.8%.

T | C | Network Type | D Gap 114 CPU time U L
max | min | avg max | min | avg

48 | 2 Sparse 729 | 52 | 25 | 34 | 36| 8.1 | 690 | 77.8 | 100 | 1920
48 | 2 Medium 733 | 54 | 20 | 3.7 | 3.8 | 922 | 68.0 | 782 | 100 | 1920
48 | 2 Dense 7391 39 | 1.3 | 32|42 | 8.1 | 652 | 77.7 | 100 | 1920
48 | 4 Sparse 73.1| 83 | 3.7 | 72 | b5 | 8.3 | 66.3 | 754 | 100 | 1920
48 | 4 Medium 73.7| 85 | 33 | 72 | 58| 8.4 | 67.5 | 76.3 | 100 | 1920
48 | 4 Dense 742 | 60 | 28 | 5.2 | 6.2 | 8.2 | 675 | 79.2 | 100 | 1920
48 | 6 Sparse 750 | 52 | 28 | 5.8 | 7.3 | 90.3 | 65.2 | 789 | 100 | 1920
48 | 6 Medium 752 | 46 | 1.7 | 39 | 7.6 | 932 | 64.2 | 77.5 | 100 | 1920
48 | 6 Dense 765|102 | 47 | 7.3 | 86 | 949 | 65.2 | 775 | 100 | 1920
64 | 2 Sparse 888 | 9.1 | 1.9 | 56 | 3.5 | 103.5 | 783 | 87.6 | 100 | 2560
64 | 2 Medium 89.8 | 98 | 28 | 5.7 | 42| 949 | 76.4 | 89.3 | 100 | 2560
64 | 2 Dense 899 | 108 | 48 | 7.8 | 46 | 954 | 79.3 | 87.6 | 100 | 2560
64 | 4 Sparse 855 | 120 | 56 | 7.8 | 6.2 | 1003 | 76.2 | 86.4 | 100 | 2560
64 | 4 Medium 93.0 | 11.0 | 48 | 7.3 | 5.9 | 975 | 754 | 8.4 | 100 | 2560
64 | 4 Dense 934|101 | 40 | 6.3 | 6.8 | 957 | 74.3 | 904 | 100 | 2560
64 | 6 Sparse 91.1 | 106 | 5.0 | 6.7 | 7.7 | 994 | 76.3 | 88.5 | 100 | 2560
64 | 6 Medium 940 | 98 | 29 | 46 | 85| 101.3 | 73.4 | 90.4 | 100 | 2560
64 | 6 Dense 952|107 | 3.9 | 88 | 9.8 | 99.3 | 783 | 8.3 | 100 | 2560
80 | 2 Sparse 96.7 | 93 | 14 | 4.7 | 3.9 | 1174 | 88.4 | 107.3 | 94.7 | 3008
80 | 2 Medium 981 99 | 22 | 52 | 3.8 | 1155 | 84.4 | 108.2 | 96.1 | 3072
80 | 2 Dense 993|106 | 5.1 | 88 | 5.6 | 116.3 | 91.9 | 108.6 | 97.3 | 3104
80 | 4 Sparse 979 | 105 | 3.8 | 81 | 6.4 | 113.5 | 96.4 | 105.8 | 95.9 | 3040
80 | 4 Medium 982 | 85 | 23 | 5.7 | 6.6 | 1203 | 95.3 | 108.2 | 96.2 | 3072
80 | 4 Dense 99.1 | 100 | 3.1 | 65 | 7.3 | 116.1 | 89.3 | 109.2 | 97.1 | 3104
80 | 6 Sparse 975 | 108 | 3.7 | 80 | 7.7 | 114.8 | 95.3 | 108.2 | 95.5 | 3040
80 | 6 Medium 984 | 97 | 3.0 | 5.8 | 8.0 | 1154 | 96.4 | 106.3 | 96.4 | 3072
80 | 6 Dense 992 | 132 | 49 | 86 | 9.6 | 1085 | 99.2 | 108.2 | 97.2 | 3104

Table 4.8: Summary of Tables 4.5-4.7, range of average gaps.

| Number of nodes [N| | Average Gap varies between (%) |

20 1.2-9.3
40 2.2-9.2
80 3.2-8.8
Overall average 2.2-9.1

www.manaraa.com



93

Table 4.9: Summary results for two practical networks. The average gap varies
between 0.0% to 5.5%.

IN|]| T |C | D Gap 1% CPU time U L
max | min | avg max | min | avg
25 |15 2 |721| 58 | 06 | 1.8 | 5.8 | 139 | 11.2| 13.3 | 100 | 187
15| 4 | 748|105 | 3.1 | 68| 78 | 163 | 11.3 | 12.2 | 100 | 187
15| 6 | 752 | 53 | 07 | 3.8 | 97 | 149 | 11.2 | 12.3 | 100 | 187
20 2 | 894|104 | 40 | 75| 63 | 192 | 124 | 159 | 100 | 250
201 4 19.8| 97 | 1.2 |59 | 78 | 21.7 | 128 | 182 | 100 | 250
201 6 923|100 | 1.5 | 47 | 95 | 199 | 122 | 16.7 | 100 | 250
251 2 197 | 79 |13 |36 60 | 21.1 |13.1| 188 | 89.0 | 278
251 4 1962|101 | 3.0 | 49| 88 | 23.3 | 13.8| 189 | 894 | 278
251 6 1969 | 90 | 31 | 51| 94 | 223 |13.2| 187 | 90.1 | 281
79 | 47| 2 | 688 | 65 | 28 | 4.8 | 6.8 | 87.2 | 68.1 | 76.9 | 100 | 1856
47 | 4 | 705 | 6.6 | 22 | 54 | 9.0 | 874 | 654 | 745 | 100 | 1856
471 6 | 739 | 94 | 3.1 | 63| 9.8 | 923 | 63.2 | 765 | 100 | 1856
63| 2 [ 8.9 | 120 | 27 | 74 | 78 | 1025 | 774 | 8.6 | 94.3 | 2339
63| 4 | 848|104 | 41 |63 | 90 | 994 | 753 | 8.5 | 98.8 | 2438
63| 6 | 872|114 | 34 | 6.7 | 106 | 985 | 754 | 87.6 | 100 | 2488
791 2 1901|104 | 44 | 7.3 | 88 | 116.5 | 87.5 | 106.4 | 83.7 | 2590
791 4 1932|112 | 38 | 74 | 95 | 1125 | 95.5 | 104.9 | 86.6 | 2683
791 6 | 955 | 116 | 45 | 7.7 | 10.2 | 114.5 | 95.5 | 105.4 | 88.8 | 2746

support the lightpaths.

The use of the sequential wavelength assignment technique indicates that the number
of unique wavelengths (W) needed for the routes are not inordinately large, typically
being < 1.5C. As expected, the number of distinct wavelengths required increases
with the maximum link-load. We also note that, dense networks require more wave-
lengths than sparse networks. An explanation for this is that dense networks generate
more lightpaths, thus increasing the possibility of more lightpaths sharing the same

link. In this case more wavelengths are required.

Computationally, the column generation heuristic is not very expensive. Computa-
tional times are approximately 80 to 100 seconds on the average for networks with
80 nodes, and much smaller for smaller networks, on a Pentium IV computer (2.4
GHz, 512 MB RAM) running Windows XP. This heuristic algorithm can therefore be
utilized to efficiently benchmark the performance of greedy procedures such as those

due to Zhu et al., [110] among others.
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Finally, we applied our heuristic procedure to two typical network topologies provided
by a large telecommunication equipment manufacturer, with node sizes of 25 and 79.
For each of these networks, we generated traffic data as outlined in our computa-
tional study while varying the same parameters (number of nodes , maximum degree,
the number of transceivers and the link capacity). For each parameter setting we
generated 10 traffic matrices and solved them using our upper and lower bounding
techniques. A summary of the results for these two networks are given in Table 4.9.
We note that the average gap between our heuristic and Lagrangian upper bound
ranges between 1.8% and 7.7%. Further, these results indicate that the values we ob-
tained for CPU times and average W for this data set, are similar to results obtained

for the randomly generated problem instances.

4.6 Concluding Remarks

We consider the problem of traffic grooming, routing, and wavelength assignment in
optical networks with a mesh topology. Two different integer programming based
formulations are presented. One formulation is used to approximate a traffic maxi-
mizing set of routes based on a column generation technique, and the other uses a
Lagrangian relaxation technique to compute an upper bound. Our models limit the
number of available transceivers at each node which accounts for a substantial frac-
tion of network costs. These formulations do not restrict the number of wavelengths
used, but do limit the link load. While we cannot guarantee that the number of
wavelengths required will be minimal, our computational results show that the num-
ber of unique wavelengths needed for accommodating the set of routes (found by our
heuristic) is not inordinately large. Our contribution in this chapter therefore lies, (i)
in the development of the two models discussed above, and (ii) in the construction of
efficient and high quality procedures for achieving lower and upper bounds for this

computationally difficult problem.

The next chapter looks at the problem of flowshop scheduling subject to blocking. The
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solution approach we use in this problem is meta-heuristic search methods. Specifi-

cally, we look at genetic algorithms.
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CHAPTER 5
BLOCKING FLOWSHOP SCHEDULING PROBLEM WITH A MATERIAL

HANDLING CONSTRAINT

5.1 Synopsis

In the introduction, a formal statement of the blocking flowshop scheduling prob-
lem was provided. This chapter is organized as follows. The section 5.2 provides
an overview of the literature on the closely related scheduling problems. The com-
putational complexity of the blocking flowshop is investigated in section 5.3. In
section 5.4, we briefly describe the existing scheduling methodology for a simple
blocking flowshop problem. The structural insights are developed for the problem
F2|blocking, MH,my = 1,mg = 2|Cyuqee in section 5.5 and two heuristic algorithms
are proposed. In section 5.6 we describe the elements of the genetic algorithm (GA)
devised to tackle the blocking flowshop scheduling problem. An optimized set of pa-
rameters for the GA are also determined in section 5.6. Results of computational
tests for the blocking problem are described with and without hybridizing in section

5.7. Finally, section 5.8 provides some concluding remarks.

5.2 Literature Review

Conway, Maxwell and Miller [31]|, Baker [8] [9], Rinnooy Kan [91], and Pinedo [84]
provide comprehensive bibliographies for scheduling problems. First we review the
flowshop with unlimited buffer capacity, also known as the permutation flowshop.
Garey, Johnson and Sethi [46] prove that for three or more machines, the complexity

of the recognition version of the permutation flowshop problem with makespan min-

96
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imization objective as unary NP-complete. See Garey and Johnson [45] for related
definitions. Baker [9] remarks that, the most successful use of branch and bound for
makespan minimization in a permutation flowshop with unlimited buffers is by Potts
[86], where instances with five machines and up to 100 jobs are often solved quickly.
However, in as many as 25% of such problems, the algorithm was terminated after
generating 100,000 branching nodes. Many heuristic procedures are available to solve
this problem (Turner and Booth [100]). The best known fast heuristic method here is
due to Nawaz, Enscore and Ham [78]. Osman and Potts [81] provide a more accurate

but slower simulated annealing algorithm.

More closely related to the work in this chapter are studies of cyclic scheduling in flow-
shops with a variety of buffer designs. In cyclic scheduling, a set of jobs is produced
repetitively in proportion to their demand until the demand for the jobs is met during
the planning horizon (Matsuo [69]). Here the objective is the minimization of cycle
time, which is the time to produce a set of jobs. Gilmore and Gomory [48] provide
an efficient algorithm for the two machine flowshop without buffers. Kamoun and
Sriskandarajah [61] show that a similar problem with three machines is intractable.
Details of these and many related results appear in Hall and Sriskandarajah [54].
Karabati and Kouvelis [62] consider a simultaneous buffer design and cyclic schedul-

ing problem, for which they describe and test an iterative heuristic.

The main reasons for designing a flowshop without buffers are cost and space effi-
ciency. Intermediate buffers in the line tend to fill up due to poor shop floor practices
while the absence of buffers prevents the accumulation of inventory which can be ex-
pensive [36]. Moreover, the factories of the future are being designed in a very space
efficient way which discourages the provision of buffers for work-in-process [44]. A
further reason is that absence of buffers limit the processing time of a job, which may

improve its quality (Hall and Sriskandarajah, [54]).

Scheduling models with blocking gained considerable attention from the study of Mc-
Cormick et al [70], who consider an m machine flowshop with fixed capacity buffers

between machines. However, each unit of buffer capacity can be considered as a ma-
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chine with zero processing times for all jobs. Therefore, their scheduling environment
is exactly the same as ours, and they attempt to minimize cycle time. They describe
a heuristic which constructs a partial sequence of the jobs, one job at a time, based
on job’s penalty, which is assessed by its flow contribution in a related network. They
also describe a second heuristic with additional features. These heuristics provide
either optimal or close to optimal schedules for five test problems with nine machines
and eight jobs. Eight instances with ten machines and 80 jobs are solved heuristically,

but comparisons with optimal cycle times or lower bounds are not provided.

Karabati and Kouvelis [63] develop an integer programming model for the blocking
flowshop problem. Lower bounds on the cycle time are obtained by solving a blocking
flowshop problem on two consecutive machines. A constructive heuristic sequences
the jobs one at a time, using the smallest possible cycle time as a criterion for where
to insert the jobs. Computational results suggest that this heuristic outperforms
those of McCormick et al., [70]. A branch and bound algorithm that incorporates
these approaches solves problem instances with 10 machines and 12 jobs to optimality
within a few minutes of IBM 3081 CPU time. For problems with nine machines and
25 jobs, the heuristics deliver solutions with relative errors that average less than 3%,

but can exceed 10% occasionally.

Abadi, Hall, Sriskandarajah [1] use the idea of deliberately slowing down the pro-
cessing of operations (i.e., increasing their processing times) to establish a precise
mathematical connection between the blocking flowshop and the no-wait flowshop.
This enables them to adapt a very effective heuristic for the no-wait flowshop as a
heuristic for the blocking flowshop. In the context of minimizing cycle time they use
Lagrangean relaxation and decomposition methods to generate lower bounds on the
cycle time. Their computational results show relative errors that average less than

2% for instances with 20 machines and 250 jobs.

Closely related to blocking flowshop problems are no-wait flowshop problems, where
a job cannot pause between operations. In a no—wait flowshop, each job must be

processed continuously from its start in the first processing stage, to its completion
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in the last processing stage, without any interruption on machines and without any
waiting in between the processing stages. Therefore, the completion time of the last
operation of a job must equal the starting time of its first operation plus the total
completion time of all the operations. Applications of no-wait and blocking scheduling
occur in the aluminum, steel, chemical and food processing industries, among others.
A detailed discussion of applications of no-wait and blocking scheduling models, and
the available algorithms, computational complexity results, and heuristics, is given

by Hall and Sriskandarajah [54].

Scheduling problems in a no—wait flowshop with parallel machines arise in the chem-
ical processes and petro-chemical production environment, where there are several
simple flow lines. The nature of the process at each level in the flow lines is such
that they are effectively identical and hence interchangeable(Salvador [93]). Another
example of no—wait scheduling situations arise in hot metal rolling industries, where

metals are processed at continuously high temperature.

Note that a no-wait flowshop with parallel machines represents a generalization of
the traditional no-wait flowshop and the identical parallel machine shop. The former
corresponds to the case m; = 1, 2 < j < k, while the latter corresponds to the
case kK = 1 and m; > 2, i.e., only one machine center incorporating more than one
parallel machine. These special cases have been studied extensively in the literature.
Efficient algorithms for minimizing makespan in a no-wait flowshop are not likely
to exist, as even the special cases mentioned above (with the notable exception of
k = 2,m1 = my = 1; Gilmore and Gomory, [48]) belong to the class of N P-complete
problems (Garey and Johnson [45], Rock [92], Sriskandarajah [97], and Sriskandara-
jah and Ladet [98]). Salvador [93] inspired by an actual application in the synthetic
fibers industry, developed a branch and bound algorithm to find minimum finish time
schedules for a no-wait flowshop with parallel machines. The worst case analysis of
some heuristic algorithms in the context of the no-wait flowshop with parallel ma-
chines has been carried out in Sriskandarajah [97] and Sriskandarajah and Sethi [99].

A number of studies consider buffers existing between the machine centers instead
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of no-wait restriction. Wittrock[104]| has proposed a heuristic algorithm primarily to
minimize the finish time and secondarily to minimize the in-process inventory. Some
heuristic algorithms for two machine center flowshop (with parallel machines and
unlimited buffer between processing stages) in the worst case performance context
have been studied in Buten and Shen [19], Langston [65] and Sriskandarajah and
Sethi [99]. Arthanri [5] studied a flowshop consisting of two machine centers Z; and
Zoy with my; > 2 and mo = 1. He developed a branch and bound based heuristic

procedure for minimizing makespan.

5.3 Complexity of the Blocking Flowshop Problem

Hall and Sriskandarajah (1996) show that the problem F2|blocking, m; > 1, mg >
1|Cinaz is equivalent to F2no-wait, mq > 1, mg > 1|Cjpee. Sriskandarajah and Ladet
(1986) show that F2|no-wait, m; = 1, mg = 2|Cpee is unary N P—complete. Thus
F2|blocking, m1 = 1, mg = 2|Cpae i also unary N P—complete. This result does not
directly carry over to our blocking problem F2|blocking, M H,m; = 1, ms = 2|Chas,
which is not equivalent to F2|blocking,my = 1,mg = 2|Ciue.. Consequently, we
investigate below the complexity of the two-stage blocking flowshop with material

handling constraint, F2|blocking, M H,mi = 1,mg = 2|Cyuaq-

Theorem 5.3.1 The recognition version of the F2|blocking, MH,m; = 1,mqs =
2|Crnaz 18 unary N P—complete.

Proof: The reduction is from the following unary NP-complete problem.

Numerical Matching with Target Sums [NMTS]| (Garey and Johnson, [45]):
Given three sets of positive integers X = {z1,..., 2}, Y = {y1, ..., ¥s 1, Z = {21, ..., Zs }
can X UY be partitioned into s disjoint subsets I'y,..., s with I'y = {z;,, ;. } such
that z, = @, +y;,,fork=1,...,57

Consider the following instance of the problem :

Thejobsetrd =HJ;|1 < i < n} consists of three types J = {Jx;, Jy;, Jz|1 < i < s}
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of parts where each type consists of s parts, or n = 3s. The processing times of three
types of jobs are as follows:

The processing times for type Jx; on Z; and Zy are Z + x; and L, respectively, for
1=1,...,8.

The processing times for type for type Jy; are L + y; and 1, respectively, for ¢ =
1,...,s.

The processing times for type Jz; they are 1 and L + Z + z;, respectively, for ¢ =
1,...,s.

It is also assumed that Z = X + Y, where X = > x;,Y = > y;, and Z = > z;.
Here we let L = 2(s + 1)(Z + 2). The decision problem can be stated as follows:
“Does there exist a sequence with cycle time Crpe < D = sL + (s + 1)(Z + 1)7".

Clearly the decision problem is class NP.

(=) Suppose that a solution to NMTS exists. Thus we assume that z; = z; + v,
i =1,...,s. Consider the following job schedule o=[Jz1, Jx1, Jy1, J2o, Jx2, Jyo,
ooy Jzs, Jxs, Jys]. The Gantt chart for this sequence can be viewed as concurrently
processing parts on three machines, as shown in Figure 5.1, where the processing
times of parts on three machines which we denote by M;, My, and My, are given.

Hence the makespan Crae = > s (Z 4 @)+ > ((Ltyi)+Fs+1=sL+(s+1)(Z+1).

My |1|Z 4= L4y 1|Z + a2 L+ye 1Z + s L+ys

Mos L+Z+= 1 L+ 7Z+4 2z 1 L+ 7+ z 1

Moy L L L
D=sL+(s+1)(Z+1)

Figure 5.1: Sequence o=|[Jz, Jx1, Jy1, J22, Jx2, Jyo, .., J2s, Jxs, JYysl.

(<) Suppose there exists a job schedule gg such that Cyue < D. We now show that,
if there exists a schedule o, then it will take the form (Jz1, Jx1, Jy1, J22, Jx2, Jyo,
ooy Jzs, Jxs, Jys), and furthermore if C,,, < D then there must exist a solution to

NMTSsTordoso;we present and prove a series of facts about schedule oyp.
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Fact 1. Machine M; is busy processing parts throughout schedule g except one unit
of idle time at the end of the schedule.

The total processing time of all the jobs on M; is sL + sZ + X + Y 4 s. Since
D =sL+(s+1)(Z+1) is the lower bound on the optimal schedule for this problem
instance, any idle time on M; (except one unit at the end) will imply that C,. > D.
Thus C,,.. = D.

Fact 2. In oy, total idle time on both machines My and Moo is equal to (s+ 1)(Z +
1)+ 1.

The total processing time of all the jobs on the second stage machines is 2sL + sZ +
Z + 5. As C,.e — D total idle time on both machines Ms; and Mag is 2D — 2sl, —
s —Z—s=(s+1)(Z+1)+1

Fact 3. In og, the number of jobs types Jx; or Jz; scheduled on My (or on Msy) is
exactly s.

Suppose 7 jobs of types Jxz; or Jzi are scheduled on My, where r > s. Then
Crae > 7L > (s+ 1)L > D. This contradicts with the fact that C,,.. = D (Fact 1).
Fact 4. In o0y, jobs are scheduled in the following form:

(Jz1, Jx1, Jyr, Sz, Jxo, Jyo, . . .y J 25, JTsy JYs)-

There are nine possible ways to schedule the first two jobs in og: (Jz;, Jx;), (J2i, J2;),
(Jzi, Jy;), (Jwi, J25), (Jwi, Jx5), (i, Jy;), (Jyi, Jx5), (Jyi Jy;), (Jyi, 7). We
show that the first two jobs scheduled in oy cannot be any of the five following forms:
(Jzi, Jy;), (Jxi, Jy;), (Jyi, Jx;3), (Jyi, Jy;), (Jys, Jz;). Suppose the first two jobs
scheduled in oy takes any of the above five subsequences. Then the total idle time on
both My and My, is at least L contradicting with Fact 2.

We show that the first two jobs scheduled in oy cannot be any of the two following
forms: (Jz;, Jz;), (Jxi, Jz;). Suppose the first two jobs scheduled in o¢ takes any of
the above two subsequences. Then there will be an idle time on M; when scheduling
any third job. This contradicts with Fact 1.

Now we are left with only two possibilities: (Jz;, Jx;), (Jx;, Jz;). In both cases, third
job scheduled should be of type Jyi. Otherwise an idle time on M; will be created
contradicting with Fact 1.
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Thus there are two possible ways to schedule the first three jobs in oo: (Jzi, Jx;, Jy)
or (Ja;, Jz;, Jy).

By continuing arguments above for next three subsequent jobs scheduled in oy (job
3i+ 1, job 3i + 2 and job 3i + 3,7 = 1,2,...,s — 1), we can show that those three
jobs take one of the following subsequences: (Jz;, Jz;, Jyx) or (Jz;, Jx;, Jyr).

Now we show that subsequence (Jx;, Jz;, Jyx) cannot occur. Suppose subsequence,
(Jzi, Jx;, Jyg) occurs in oo, then there will be a subsequence (Jz;, Jz;, Jyg). This
subsequence (Jz;, Jz;, Jyr) will cause an idle time on M; contradicting with Fact 1.
Thus the subsequence (Jz;, Jx;, Jyx) is only feasible. Hence og takes form of the

following sequence: (Jz1, Jx1, Jy1, Jzo, Jxo, Jya, ..., Jzs, Jxs, JYs)-

In o9, if 2; < y; +x; then an idle time of x; + y; — z; occurs on M, contradicting Fact
1. If z; > y; + x;, then there exists an index r such that z, < y, + ., hence an idle
time of x, + y, — 2. > 0 occurs on M;, contradicting Fact 1. Therefore, x, =y, + 2,

for r =1,...,s. Thus, there exists a solution to NMTS. O

5.4 Two-Machine Blocking Flowshop Problem

In order to tackle the problem F2|blocking, MH,m; = 1,ms = 2|Ce and gain
structural insights, we first study the existing scheduling methodology for a simple
two machine problem F2|blocking|C;, where each stage has only one machine. The
problem F2|blocking|C; is equivalent to the corresponding no-wait problem F2|no —
wait|Cy. In the two machine flow-shop, minimizing the cycle time C; is equivalent to
minimizing total idle time on the first machine. Therefore, the no-wait problem and
the blocking problem have the same objective function value for the same sequence
of jobs. By expressing the elapsed time between the start of two successive jobs J;
and J on the second machine (Ms) as distance from city j to k, the no-wait problem,

hence blocking problem, can be converted to a TSP as shown below:

Traveling Salesman Equivalence of Problems F£2|no — wait|C,,.. and

F2|blocking|Cmaq:
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Let e; = pj1, and f; = pje, § =0,1,...,n,n+ 1, where ey = fo = €ny1 = fny1 = 0.
Note that we need to introduce one artificial job Jy with eq = fo = 0. The next cycle

begins with job .J,, ;1 where Jy and .J,;; are identical.

dk,kJrl
Mi|| e [e2 €3 ... ek | |ek+1 €n
M, h| f /3 Jre |fen fn
b2 o3 j=k j=k+1  jon d=ntl

Figure 5.2: TSP Equivalence of F2|no — wait|Cypee and F2|blocking|Cirae-

The distance, dj, ;1 between two cities k, k + 1 is defined as the time between start

time of job k on M, and the start of job £+ 1 on M,. Thus,

di k11 = maz{eri1, fr}-

The makespan, C,,q. can be expressed as follows:

n
Cmaz — Zi:O dk,k+1-

Note that, the algorithm of Gilmore and Gomory [48] that solves the TSP with
the special distances described above (and therefore F2|no — wait|Cy problem) also
solves the blocking problem F2|blocking|C;. In both problems, a given set of jobs is
produced repetitively, once each cycle. The algorithm described below solves F2|no—
wait|Cy. The intuition behind the algorithm is that, ideally, the shortest processing
time on first machine would be concurrent with that on the second machine, similarly
for the second shortest processing times on the two machines, and so on. If this is
not possible, a dual improvement step moves the current schedule towards feasibility
at minimum cost. As the algorithm described below tries to match closely the task

processing times on both machines, one can speculate that this may form a good
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heuristic to our original two-stage problem F2|blocking, M H,my, = 1,mge = 2|Ciuuz

(Figure 1.1).

The optimal makespan of job set J = {J;|1 < j < n} for F2|no — wait|Cnee is equal
to the optimal cycle time of job set JU{Jo} in F2|no— wait|Cy, where Jy is an artifi-
cial job with zero processing time on both machines. Therefore, the Gilmore-Gomory

algorithm also solves F2|no — wait|Crae-

Gilmore and Gomory Algorithm

Step 1. Sort {f;} in the nondecreasing order and renumber the jobs so that with
the new numbering f; < fj41,7=1,2,...,n— 1.
Step 2. Sort {e;} in the nondecreasing order ey;y < eg(j11), 5 = 1,2,...,n — 1. Find

¢(p) for all p. The permutation ¢ is defined by ¢(p) = ¢, ¢ being such that e, is the

pth

Step 3. Compute the distance of arc (7,7 + 1) as

smallest member in {e;}.

¢ji+1 = maxz{0, {min(fj+1, es(i+1)) — maz(fj, ep))t} for j=1,2,...,n— 1.

Step 4. Construct an undirected graph with n nodes and undirected arcs (4, ¢(j)),
i=1,2,...,n.

Step 5. If the current graph has only one component, go to step 7. Otherwise select
the smallest value ¢; ;11 such that j is in one component and 7 + 1 in another. In the
case of a tie for the smallest, choose any.

Step 6. Adjoin the undirected arc (j,j + 1) to the graph using the j value selected
in step 5. Return to step 5.

Step 7. Divide the arcs added in step 6 into two groups. Arcs (4,7 + 1) for which
Ji < eg(;) go in group 1 while arcs with f; > eg4(;) go in group 2.

Step 8. Find the largest index j; such that arc (j1,7; + 1) is in group 1. Find the
second largest 7o, etc., up to j,, assuming there are r elements in group 1.

Step 9. Find the smallest index ¢; such that arc (¢1,¢; + 1) is in group 2. Find the
second smallest %5, etc., up to t, assuming there are k elements in group 2.

Step 10. The minimal cycle time is obtained by following the j** job by the job 1*(j),

* o _ _
where ¢ (]) - QS(U) s and v = Q1,511 a1+ Qg 5 41Oty it 41t o 41+ Qg 11, 4-1(5) - In
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the above expression the permutation «,, is defined to be a,4(p) = q,ap4(q) = p

and ap(j) = 4, if § # p.q.

Example 1: F2|no — wait|Cy

e Take the eight-job problem given in Table 5.4. j is the job number and e; and

[; are processing times on machines M; and Ms, respectively.

Table 5.1: Jobs and their processing times

jlei|fi
1] 1]10
2110 9
311625
41 1] 5
501 8| 5
6|17 | 24
71 4110
82210

o After sorting f;’s in non-decreasing order and re-numbering jobs we obtain Table

5.4 (Step 1).

Table 5.2: Jobs after sorting by f;

J | rename jobs | f; | €;
1 J1 51 1
2 Jo 5| 8
3 J3 9110
4 Jy 10 1
5 Js 10| 4
6 Js 10 | 22
7 J7 24 | 17
8 Js 25 | 16
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e We get the column ey(;) in Table 5.4 by sorting in non-decreasing order, the en-
tries for each f; in column e; of Table 5.4. Column ¢(j) gives the corresponding
job number of e;’s in Table 5.4. Next we calculate the max and min of columns
J; and eg(;y. Using these and the equation given in Step 3 of the Gilmore and

Gomory algorithm we calculate distance or cost column ¢; ;41 (Table 3).

Table 5.3: Distance of arc ¢; 1.

J | fi | es) | #U) | maz{fi eyt | min{fs esih}t | G
1| 5 1] 1 5 1] o
21 5 1| 4 5 1] o
31 9 4 5 9 4 0
4110 8 2 10 8 0
5110 10 3 10 10 0
6| 10 16 8 16 10 1
7| 24 17 7 24 17 0
8125 22| 6 25 22| -

e Next we construct a undirected graph ( Figure 5.3) with nodes corresponding
to job numbers j = 1 to 8. By looking at the columns j and ¢(j) of Table 5.4
we draw the undirected edges j-¢(j) on the graph (Step 4). Thus we obtain
edges 2-4, 3-5 and 6-8 in Figure 5.3.

The graph in Figure 5.3 has five components. Node 1 is in component one,
nodes 2 and 4 are in component two, nodes 3 and 5 are in component three,

nodes 6 and 8 are in component four and node 7 is in component five.

e Eixcept edge 6-7, all other edges have cost zero. So we adjoin undirected arcs
1-2, 2-3, 5-6, and 7-8 to the graph to obtain a single component graph (Figure
5.4), completing Steps 5 and 6.

Figure 5.4 shows the final result.

e An inspection of Table 5.4 shows that, condition f; < ey, is satisfied only by
the arc (5 6) (Step 7). Hence, from Step 7 we obtain two groups with group one
containing the arc (5 6) and group two containing arcs (1 2), (2 3) and (7 8).
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Figure 5.3: Undirected Graph with five components

O—0 <33 @ E;D—@ O—O®

Figure 5.4: Single component Graph

i < ess) i > es0)
Group 1 Group 2
(5,6) (1,2) (2,3) (7,8)

Next we execute Steps 8 and 9.
The largest index 7; such that arc (ji,j1 + 1) is still in Group 1 is 5. So j; = 5.
The smallest index s.t. arc (£1,%;+1) is in Group 2 is 1. Hence ¢; = 1. Similarly
we find that o = 2 and t3 = 7.

For any job j, cycle time is minimized when the job following it ¢*(j) is such
that ¥*(j) = ¢(v), where v = a; gag 2cve 37 8(f) (see Step 10). Hence, to obtain
the job following job j, we apply the permutation ¢¥*(j) = ¢as gv1 20va 3007 5(7)-
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For example, for j = 1,

P (1) ¢Oé5,6041,2042,3047,8(1)
¢045,6041,2042,3(1)
¢Oé5,6041,2(1)

= ¢ase(2)

= ¢(2) =4

From Table 5.4 we see that ¢(2) = 4. Hence job 4 will follow job 1. Similarly
for all other jobs the immediately following job may be found. These are shown

in Table 5.4.

Table 5.4: Job Sequence.

J | V() = pas e 2003078())
1 4
2 5
3 1
4 2
5 8
6 3
7 6
8 7

e From Table 5.4 the optimal job sequence can be obtained by reading the (4, ¢¥*(j))

pairs. The optimal job sequence is | 14258763 |, that is, sequence Ji, J4, Jo, J5,
Js, J7, Jg, J3.

e The Gantt chart in Figure 5.5 gives the optimal makespan for this sequence.
Note that cycle time C; = 104. If we were to solve F2|no— wait|Cp,a. problem,
we must introduce an artificial job, Jy with eg = 0 and fo = 0, and re-run
the above algorithm. In this case we will obtain the same job sequence with

Cinaz = 105.
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Jio o Ji Je Js Js Jz Js Js Ji
M; F F 8 |4 16 17 22 10 F
M, | 3] 10 |5] 10 25 24 10 9

A
\

Cycle time=C; = 104
Figure 5.5: Gantt chart for the optimal sequence

5.5 Two-Stage Blocking Flowshop Problem

In this section, we study the structure of the two-stage blocking flowshop problem,

F2|blocking, MH, m; = 1,my = 2| Cruax. In constructing a schedule for a given job
sequence, it is intuitive that a job should be assigned to My, whenever both machines
in the second stage are free. Processing that job on My, will block other jobs from

entering machine Mss. Now we state our schedule rule below.

Scheduling Rule 1: Given a job sequence, the job schedule is constructed by as-
signing the jobs to machine My, whenever both machines in the second stage are

free.

It is difficult to establish a precise mathematical formula for the makespan under this
scheduling rule 1. Therefore, we use the following scheduling rule 2 that is useful in

approximately capturing the makespan formula for the scheduling rule 1.

Scheduling Rule 2: We assume without loss of generality that the job sequence
is {J1,J2,...,J,}. Odd numbered jobs are scheduled on machine My, and even

numbered jobs are scheduled on Mo;.

We use the scheduling rule 2 to establish a mathematical formula for the makespan.
Under rule 2 for a given job sequence {Ji, Js, ..., J,}, the idle time on M; may be
written as follows (see Figure 5.6 for n = 6):

Let e; = pj1, and f; = pj2, for all j.

dio = max{0, fo —e3, f1 — €2 — €3},

dog = max{O, Jo—es, fz—eq4— 65}7
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dss = max{0, fs — ez, f5 — eg — ez}, where ez = 0.
Thus di,i+1 = max{O, f2i — €2i+1, f2i—1 — €9 — €2i+1}-
For n even, the makespan C,,q, for the job sequence {Ji, Js, ...J, } can be written as

follows:

n T
Crnaz = Zi:1 e + Zi:1 dijiy1-

where we let (n + 1)th job be an artificial job with e, 1 = f,11 = 0 and r = n/2.

The makespan can be expressed as follows (assume 7 is even):

Crnae = €1 1+ €2 + max{es, fo, f1 — ea} + €4 + max{es, fu, fs —es} + .. + eo

+ ma‘X{e2r+17 f27‘7 f27'—1 - 627'}-

Similarly, the makespan for n odd can easily be derived as follows:

n r
Cmaz — Zi:l €; + Zi:l di:iJrl'

where we let (n -+ 1)th and (n+ 2)th jobs be artificial jobs with e, 11 = fo11 = €nie =
frre=0and r = (n+1)/2.

Note that it is easy to see that the makespan given by rule 2 is an upper bound for
the makespan given by rule 1. More precisely, for a given job sequence the following

relation holds.

Crnaz(rule 1) < Crrae(rule 2) = Z e; + Z diit1-
-1 -1

J1i Jo J3 Ja J5 Je

d d d
Ml e1 € }qib{ €3 €4 }qib{ €5 €6 }134—>

Mo n | f3 | fs |

Mo | f2 fa fo

Figure 5.6: A Schedule for the job sequence {Ji, Ja, ...J,, } using rule 2, n = 6.

www.manaraa.com



112

5.5.1 Structural Insights and Heuristics

Note that in all of the heuristics proposed below, we use scheduling rule 1 in con-
structing a job schedule. That is, in a given job sequence, the job entering stage 2

should be assigned to Ms; whenever both machines in the second stage are free.

We consider two heuristics for the F2|blocking, M H,m; = 1,my = 2|Ci,a, problem.
These are respectively, the Gilmore and Gomory algorithm [48], and DECf procedure
explained below. Furthermore, when implementing the sequence obtained from either

of these two heuristics we follow the scheduling rule 1 described above.

Gilmore and Gomory Algorithm

We apply the Gilmore and Gomory algorithm and get a job sequence. This is optimal
for the two machine case. However it is not optimal for our 2-stage three-machine
situation. But when the processing times on both stages are nearly equal, the max
term in the makespan equation (5.1) becomes nearly equivalent to maz{ea, 1, for}-
This form is solvable by Gilmore and Gomory algorithm which is a good heuristic
for problem instances where processing times on both machines are nearly equal (or

generated from the same Uniform distribution).

Algorithm DECT

Our second heuristic is called DECf. This is a simple heuristic obtained as follows:
Process the jobs in the non-increasing order of f; (their processing times in the second
stage). Note that, when the processing times f;’s are much larger than e;’s, the maz
term in the makespan equation (5.1) becomes closer to max{ fa, for_1}. This form
is solvable by algorithm DEC, a good heuristic for problems where processing times

fi’s are much larger than e;’s.

On the basis of computational experiments conducted, we find that this heuristic
performs better when second stage is the bottleneck (i.e. has the longer processing

times) . In this case it is important to minimize the total processing time in the second
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stage. By following DECt sequence we try to process equal-sized second processing
time jobs by successively parallelizing operations in My, and Mgy Matching jobs this

way reduces the total completion time on stage two.

5.6 Genetic Algorithms (GA)

A large class of combinatorial problems remains analytically intractable. Schedul-
ing jobs in a blocking Flowshop to minimize the makespan (Fm|blocking|Caz) is
one such problem (Hall and Sriskandarajah [54]). Scheduling in a no-wait Flowshop
(F'm|no — wait|C,y, ) is another. Many other optimization problems contain very lit-
tle easily-apparent structural information that may be exploited systematically. Such
problems are now being tackled by heuristic or meta-heuristic methods. In the present
work, we have also evaluated the use of GAs in scheduling a blocking flowshop with
material handling constraint. GAs are directed global search meta-heuristics that
can find solutions by simultaneously exploring multiple regions of the solution space
and by exploiting the promising areas. However, unlike many standard optimization
techniques, GAs do not make strong assumptions about the forms of the objective
function. This section outlines the GA and special GA operators used in the present
study. There is yet another reason for using meta-heuristic global search methods.
This is when the presence of local optima is suspected. First, note that in many real-
world problems we are seeking the global optimum rather than the local optima. Only
a subclass of these problems, called convex programming problems, are guaranteed
to be free of distinct local optima. A nonlinear optimization problem in general will
not be a convex programming problem and hence, it may have local optima distinct
from the global optimum. Further and importantly, there is no simple way to test a

nonlinear response function for convexity.

GAs belong to a class of heuristic methods that uses randomization as well as directed
smart, search methods to seek the global optima (Holland [55]). GA procedures are
inspired by evolutionary processes through which life is believed to have evolved in
its present forms (Goldberg [50]). The other such popular heuristic search methods

are simulated annealing (Connoly [30]) and tabu search (Glover and Laguna [49]), all
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used to assist in the solution of NP-hard problems. However, GAs are regarded to be
more general and abstract (context independent) than both simulated annealing and
tabu search (Pinedo [84], p. 154). Applications of GAs in scheduling include Uckun
et al [101], Murata and Ishibuchi [76], Chen, Vempati and Aljaber [25] and Portmann
[85] among numerous others. GAs are being steadily tested in solving many large
and difficult Operations Research problems, such as the TSP to speed up its solution
(Michaelewicz [72]). In scheduling, GAs often view sequences (of jobs) as chromosomes
(the candidate schedules or solutions), which in turn are members of a population.
Each individual (a schedule) is characterized (merited) by its fitness (e.g., by its
makespan value). Thus, the fitness of an individual is measured by the associated value
of the objective function . The GA procedure works iteratively (thus emulating an
algorithm) with the members of the population; each new iteration is a generation in
the GA terminology. In the GA environment, a generation of chromosomes consists of
surviving chromosomes of the previous generation and some new solutions or progeny
created from the previous generation. While the GA is iterating, the population size

is usually kept constant from one generation to the next.

The progeny are produced through reproduction, mating by crossover, and mutation
of the chromosomes of the previous generation (the parents). Individual solutions
consist of the juxtapositioning of genes as in biology. It is the presence of certain
genes that imparts each solution its individual and sometimes unique characteristic.
In the context of scheduling, a chromosome may represent information regarding the
job sequence on a machine, an example being [A C B D F|. The different holding po-
sitions in this sequence are known as alleles. Thus, the second allele in this sequence
has the value C. A mutation in a parent chromosome may be equivalent to an adja-
cent pairwise interchange in the corresponding sequence. A crossover combines some
features of two parent chromosomes to create progeny inheriting some characteristics
from each parent. As the GA iterates, in each generation the fittest chromosomes
reproduce and the least fit die. The birth, death, and evolutionary reproduction pro-
cesses that determine the characteristics of the next generation of solutions can lead
to a complicated stochastic process. This process is a function of the fitness levels

of -the-chromesomes-of the current generation and the rates of mutation, crossover
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and reproduction, the controlling elements or operators of the genetic evolutionary

Process.

5.6.1 Selection, crossover, and mutation of GA solutions

Selection is a key operation in GA search, which in scheduling may be directed to
optimize an objective function, such as the minimization of makespan. The purpose
of selection is to propagate high fitness characteristics in the population and to elim-
inate from the population the weaker chromosomes, thus keeping the search directed
toward the optimization of the objective function. One effective way of doing selection
is to select the elite (higher fitness) solutions in the population and then reproduce
them in proportion to their relative fitness (Goldberg, [50]). A parameter (called elite
fraction or ¢) often controls the (upper) fraction of the population that is treated
as elite. Many other variations of this simple selection scheme may be devised. The
crossover operator lets suitably chosen pairs of chromosomes to mate with each other
to produce progeny. In scheduling, crossover is implemented slightly differently from
the manner in which it is done in simple numerical optimization. One has to worry
about preventing infeasible solutions (schedules) from being created, using special
repair methods, if necessary. Murata and Ishibuchi [76] list some examples of job
sequence type chromosomes and their processing. Erben [38] used GAs similarly to
guide university time tabling decisions. Construction of the appropriately coded so-
lution representations and the corresponding GA operators is one vital aspect of
successfully applying GAs in heuristic search-based optimization. Perhaps an equally
important challenge is the optimization of the computational effort, balancing explo-
ration (of the solution space) and exploitation (of the features of good solutions or
sequences produced along the way). This balance is affected greatly by the choices of
the different GA parameters, including elite fraction ¢ of current parents selected to
participate in mating, population size (P;), the probability of crossing two selected
parents (), and the probability of mutation (F,). The problem itself is one op-
timization and guidelines here are still rather few (Davis [33], Chen, Vempati and

Aljaber [25]). Parameterization has also been noted to be problem-specific. We used
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the design-of-experiments (DOE) approach to identify the optimal settings for ¢, P,
F. and P, before we used GA in the production mode to discover the optimum job
sequence (Bagchi and Deb [6]). In this study we kept ¢=1 and maintained the same
optimum population size (P,) throughout. In an extensive simulation study of flow-
shop scheduling, Murata and Ishibuchi [76] reported the superior performance of the
two-point crossover and the shift change mutation procedure in genetic search of op-
timum sequence in flowshops. However, as with the parameterization of GAs, such
observations are also problem-domain specific rather than valid in all situations. For
instance, in the present study best results in sequencing the products were obtained

when one-point crossover and arbitrary two-job change mutation were used.

5.6.2 Special GA operators devised for the present problem

Here we explore a way to choose the different GA parameters, namely P, P., F,, etc.,
and the different crossover and mutation schemes that introduce a controlled amount
of randomness while the GA is executing. However, it is well known now that the GA’s
efficiency depends to a high degree upon the selection of these control parameters
(Davis [33]). A further complication exists because it is also widely reported that
parameter settings may be problem-specific, and that the effects of these parameters

may interact.

Initialization of the GA

The GA starts with a population of randomly generated initial solutions. As it is
conventional, we started this study by randomizing this initial condition. Subsequently

we hybridized the GA with suitably selected initial solutions.

Crossover and mutation for sequencing the products

A key consideration in designing the crossover operator for the sequencing chromo-

some is avoidance of infeasible sequences. Recall that optimal sequencing in a flow-
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shop is a permutation search. Earlier published work report good results with partially
mapped crossover with necessary repairs to restore feasibility to be performing well in
permutation search (Uckun et al [101]). In the present study, the one-point crossover

when combined with appropriate parameters Ps, P, and P, performed the best.

In the crossover method we used, two offsprings are produced by mating of two
parents. Upto the crossover point one offspring will have the same allele sequence on
its chromosome as one parent. (The other offspring will have the same as the other
parent.) To fill the remaining alleles we search the other parent’s chromosome from
the beginning (the left-most allele) to end (the rightmost allele) sequentially. When
an allele which is not already in the offspring’s chromosome is found, we copy this to
the offspring’s chromosome. We proceed this way until all remaining allele positions
are filled (Figure 5.7). In this method no repair is needed on offspring’s chromosome
to ensure feasibility of the sequence. Mutation was done by occasionally switching

two randomly choosen alleles in an offspring’s chromosome (Figure 5.8).

Description of the GA

The GA algorithm presented below generates P, random job sequences for generation
0 and evolves the population of solutions for a given number of generations (Genmas)-
The generation index is specified by variable Gen. Each generation has the same
population size P;. The algorithm keeps track of the best sequence ¢* found in each
generation and the corresponding fitness value f* which is equal to the reciprocal of
the makespan C,,,... Each generation’s best sequence is fed to the initial population of
the following generation. This way the best solution is preserved from one generation

to the next. The best sequence after P; generations (o**) is the overall best sequence.

GA algorithm

Step 1. Initialize P, P,, P, and Geny,q,. Set Gen = 0 and f** = 0.

Step 2. Generate P, random job sequences o;, @ = 1, ..., P,.

Step 3. Evaluate each sequence o; and find fitness value f; (= 1/Cinaz)-

Step 4. Sort all the sequences in non-increasing order of fitness values. Find the

currentrbestsequence of generation Gen, ¢* and the corresponding fitness value f*.
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It f*> f**, then set o™ = ¢* and f** = f*.

Step 5. If Gen = Genyqa,. go to step 11.

Step 6. Select top two parents from the ordered population of generation Gen and
crossover with probability P. to produce two children. Next select the next two par-
ents and do the same. Continue this way till all population members are selected.
The children obtained from crossover and the parents from generation Gen will be
members of generation Gen + 1.

Step 7. Mutate the whole population (Children+ Parents) based on their mutation
probabilities.

Step 8. Sort all the sequences in non-increasing order of fitness values. Preserve the
top P, members and delete the rest.

Step 9. Replace the sequence having the worst fitness value in P, members obtained
in Step 8 with o*.

Step 10. Set Gen = Gen + 1 and go to Step 3.

Step 11. ¢** is the best sequence obtained with makespan C,,o, = 1/f**.

Crossover point Crossover point
Parent 1 Parent 2
1 2 3 4 5 3 5 2 4 1
1 2 3 5 4 3 5 2 1 4
Offspring 1 Offspring 2

Figure 5.7: One-Point Crossover Implemented
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Alleles Randomly Seleted

| |

1 2 3 4 5
1 5 3 4 2

Alleles After Mutation

Figure 5.8: Single Random Allele Mutation

GA parameterization by DOE

Since the GA’s convergence is noted to be greatly affected by the choice of the GA
parameters, this aspect was especially addressed in this study. A good combination
of parameter values has two properties. First, it produces a lower makespan average
of the best schedules reached in the replicated runs. Second, it produces these best
values with high consistency, or a lower variance. Thus, a well-parameterized GA con-
verges to the global optimum rapidly, and consistently, regardless of the algorithm’s
starting condition. The last characteristic makes a good GA robust in its performance.
A statistical experimental framework (Bagchi and Deb [6]) was used in the present
study to discover the most appropriate values of the GA parameters P, (the proba-
bility of crossover), P, (the probability of mutation) and Ps (population size). The
experimental layout used is a three-level full factorial design (Montgomery [74]) in-
volving parameter values judged to be the possibly correct values. Each experimental
run involved parameterizing the GA according to the rows in the experimental table
and then running the GA from certain fixed initial condition for a given number of

generations (here 100), in a pilot run fashion. The makespan value of the best schedule
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produced in each such run indicates the parameters’ combined performance. Further,
to remove the bias of the starting sequence, several randomly produced initial starting
(job) sequences were tested in each run, providing the necessary replications; these
starting sequences were kept unaltered in each factorial run. Figure 5.9 indicates the
marked difference (for a 100-job problem) in the convergence behavior of two typical
sequencing GA runs using parameter values as shown. It is evident that inappro-
priate parameterization produces poor convergence or no convergence at all. Tables
5.6.2 and 5.6.2 display typical results obtained from the experimental three-factor full

factorial GA runs for 100 generations with parameters as shown.

Interaction of parameter effects indicated that the parameters here could not be arbi-
trarily and individually optimized. Subsequently, the values P; = 1000, P. = 0.95 and
P, = 0.05 were selected as the most appropriate ones. These parameter values were
implemented in the production GA runs for processing of the sequencing chromosome.
Figure 5.10 shows the characteristic convergence of the shortest makespan produced

by a well parameterized GA run.

Table 5.5: P, = 1000

P. | P, SEED No.

1 2 | 3 | 4 ] 5 ] 6 ] 7 ] 8 9 | 10
0.9 | 0.01 | 4026 | 4024 | 4013 | 4033 | 4037 | 4078 | 4037 | 4044 | 3994 | 4082
0.9 | 0.05 | 4028 | 3985 | 4019 | 3975 | 3997 | 4015 | 3976 | 4007 | 4010 | 3996
0.5 | 0.01 | 4127 | 4137 | 4127 | 4128 | 4137 | 4119 | 4132 | 4128 | 4132 | 4118
0.5 | 0.05 | 4081 | 4111 | 4080 | 4091 | 4082 | 4120 | 4057 | 4108 | 4101 | 4140

5.7 Computational studies and comparisons of results

Two computations studies were done to evaluate the methods proposed in this paper.
In the first one we randomly generated job processing times for the two stages of the

F2|blocking, M H, m; = 1,mq = 2|C,,4, flowshop as follows. For stage one and stage
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Table 5.6: P, = 500

P. | P, SEED No.

1 2 | 3 | 4 ] 5 ] 6 ] 7 ] 8 9 | 10
0.9 | 0.01 | 4085 | 4104 | 4057 | 4106 | 4135 | 4063 | 4129 | 4063 | 4064 | 4055
0.9 | 0.05 | 4045 | 4083 | 4039 | 4024 | 4020 | 4044 | 4022 | 4055 | 4068 | 4064
0.5 | 0.01 | 4283 | 4198 | 4159 | 4192 | 4213 | 4114 | 4152 | 4167 | 4180 | 4120
0.5 | 0.05 | 4161 | 4091 | 4143 | 4093 | 4126 | 4103 | 4115 | 4133 | 4158 | 4117

1375 | Makespan —— seed=2314

—@— seed=6789
Parameter Set 2 —a— seed=10123
Ps=1000

—— d=23478
Pc=0.40 see

—3— seed=33932
seed=46578

132

1275

1225

Parameter Set 1
1175 Ps=1000
Pc=0.95
Pm=0.05

1125

0 10 20 30 40 50 60 70 80 90 100

GA Generation #

Figure 5.9: GA convergence for two different parameter settings with identical random
starts.

two job processing times were randomly generated from U ~ (1—10) and U ~ (1—35)
distributions, respectively. For the second study we obtained processing times from

the same distribution—U ~ (1 — 35)—for both stages.

Therefore, for the first study, the total processing time of stage 2 is greater than that
of stage 1. For the second study, this is roughly the same. Hence in the second study,

the benefit if any of having an extra Machine in stage 2 would likely be marginal.

We considered three sets of problems in each case, with different number of jobs (25,
50 and 100). We solved ten different problems in each case. To set the reference,
makespan was calculated for 1000 randomly generated job sequences. The sequences
constructed by the two heuristics (DECf and GG) were also calculated. For the same

problem a GA search was done to produce a good schedule. In the second study the
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5500

Makespan
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4500

4000

1 101 201 301 401 501 601 701 801 901
GA Generation #

Figure 5.10: Typical convergence profile for a well-parameterized GA.

Gilmore-Gomory solution for the two-machine problem was also obtained.

For GA we used the following parameters: P, = 1000, P, = 0.95, and P, = 0.05. The
best sequence obtained upto 1000 generations of GA iteration was recorded in each
GA run. The number of generations the GA took to find the best makespan with no
further improvement showing in upto 1000 generations is indicated in parenthesis in

the tables that follow.

In the first study we used the DECf solution as a member of the initial population of
GA solutions. In the second set of studies the GA was hybridized by introducing the
Gilmore-Gomory solution into the initial population. In the tables below the CPU

times indicated are for an Intel pentium III, 722 MHz processor.

5.7.1 Study I-Summary of results when average job processing times are

not equal

The numerical results are displayed in Tables 5.7.1, 5.7.1 and 5.7.1.

e In this study stage 2 is the bottleneck.
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No. | Rand.Best | DECf | GG | Pure GA | Hybrid DECfH+GA | CPU time(Pure GA)/Sec
1 288 287 311 | 254(596) 252(49) 124.759
2 250 238 | 262 | 227(35) 222(34) 125.800
3 283 274 308 | 258(999) 253(44) 112.752
4 329 317 352 | 299(304) 294(859) 109.016
5 317 307 | 353 | 286(58) 280(60) 128.705
6 263 248 280 | 231(442) 228(832) 112.962
7 220 224 | 220 | 206(28) 206(28) 104.089
8 282 292 324 | 259(428) 259(428) 114.514
9 217 228 237 | 192(812) 192(812) 104.570
10 257 251 296 | 226(320) 224(61) 112.401

Table 5.8: Unequal job processing times: number of jobs=50

No. | Rand.Best | DECf | GG | Pure GA | Hybrid DECfH+GA | CPU time(Pure GA)/Sec
1 618 603 679 | 541(167) 544(97) 186.898
2 597 606 648 | 531(208) 531(208) 193.718
3 572 559 616 | 497(114) 485(505) 204.043
4 607 599 637 | 539(179) 540(78) 198.855
5 580 552 646 | 509(110) 505(448) 184.555
6 616 611 653 | 542(102) 540(500) 179.127
7 580 560 620 | 498(976) 501(101) 175.953
8 559 559 | 559 |  559(1) 559(1) 108.526
9 595 582 614 | 521(991) 523(289) 202.130
10 485 474 481 | 460(104) 460(42) 197.634

DECE heuristic outperforms the Gilmore-Gomory heuristic. This is not unex-

pected since the processing time in stage 1 is not very relevant here. We also

found that randomly generated initial solutions generally performed better than

the Gilmore-Gomory solution.

Pure GA results (without hybridizing) were always better than both the heuris-

tics applied alone.

The hybridized GA consistently performed better than the pure GA in terms of

either finding a better solution for the same number of iterations (generations)

or finding an equally good solution in fewer GA iterations.
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Table 5.9: Unequal job processing times: number of jobs=100

No. | Rand.Best | DECf | GG | Pure GA | Hybrid DECf+GA | CPU time(Pure GA)/Sec
1 1232 1196 | 1319 | 1063(409) 1051(473) 356.021
2 1174 1138 | 1223 997(410) 993(595) 366.256
3 1178 1144 | 1264 | 1018(715) 1007(871) 347.479
4 732 714 741 697(121) 697(72) 308.552
5 1219 1155 | 1278 | 1022(352) 1016(960) 385.484
6 1234 1211 | 1360 | 1058(255) 1055(329) 366.646
7 1275 1270 | 1334 | 1096(269) 1097(325) 366.577
8 1081 1048 | 1067 920(299) 903(329) 365.104
9 1139 1119 | 1238 | 1019(171) 1016(889) 366.605
10 1291 1251 | 1392 | 1107(255) 1093(486) 391.723

5.7.2 Study 2—Results when job processing times are equal

The numerical results are displayed in Tables 5.7.2, 5.7.2 and 5.7.2.

Table 5.10: Equal job processing times: number of jobs=25

No. | Rand.Best GG DECf | Pure GA | Hybrid GGH+GA | CPU time(Pure GA)/Sec
2M | 3M

1 447 504 | 449 | 504 404(35) 404(35) 110.639
2 461 459 | 453 | 477 452(5) 452(5) 99.022
3 480 535 | 485 | 516 439(218) 439(218) 110.528
4 434 450 | 427 | 494 413(23) 413(13) 105.041
5 485 484 | 484 | 500 484(10) 484(1) 100.804
6 430 479 | 421 | 460 380(32) 380(35) 109.086
7 549 543 | 538 | 623 535(12) 535(9) 102.547
8 457 451 | 445 | 532 446(12) 444(8) 103.368
9 548 548 | 546 | 569 546(12) 546(1) 96.268
10 532 539 | 534 | 551 530(7) 530(7) 96.699

e As expected, the three-machine Gilmore-Gomory solution was always better

than the two-machine case due to the availability of extra processing capacity

in the second stage. But this improvement was marginal because processing

times in the two stages were of comparable magnitude (both had the same

averages).

o The Gilmore=Gomory heuristic performed better than DECf. This is explained
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Table 5.11: Equal job processing times: number of jobs=50

No. | Rand.Best GG DECf | Pure GA | Hybrid GG+GA | CPU time(Pure GA)/Sec
2M 3M
1 1052 1036 | 1034 | 1096 | 1034(49) 1034(1) 172.828
2 1001 992 990 1052 990(5) 990(1) 173.849
3 900 900 858 948 826(29) 829(34) 191.154
4 928 898 886 985 884(80) 884(7) 171.186
5 1101 1070 | 1055 1127 | 1054(34) 1054(10) 171.536
6 929 896 873 979 862(43) 862(33) 181.050
7 1001 981 963 1065 954(38) 954(23) 171.025
8 945 895 895 1010 895(15) 895(1) 169.263
9 1005 998 993 1034 993(16) 993(1) 161.442
10 932 895 884 976 882(36) 882(14) 171.086
Table 5.12: Equal job processing times: number of jobs=100
No. | Rand.Best GG DECf | Pure GA | Hybrid GG+GA | CPU time(Pure GA)/Sec
2M 3M

1 1950 1843 | 1813 | 2051 | 1797(104) 1797(50) 339.277
2 1938 1861 | 1816 | 2030 1790(74) 1788(82) 508.601
3 1616 1953 | 1545 | 1761 1513(85) 1513(10) 310.656
4 1972 1887 | 1882 | 2063 1882(77) 1882(1) 363.743
5 2051 1984 | 1952 | 2167 | 1939(120) 1937(2) 370.062
6 1925 1825 | 1823 | 2028 | 1823(104) 1823(1) 641.582
7 2002 1948 | 1876 | 2044 | 1828(100) 1828(71) 353.137
8 1804 1758 | 1691 | 1897 1639(89) 1639(102) 345.867
9 1929 1814 | 1809 | 1995 | 1809(135) 1809(1) 337.014
10 1887 1802 | 1793 | 1994 | 1793(123) 1793(1) 334.601
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by the fact that the processing time of stage one is relevant in this case. Also,
the best solutions of randomly generated solutions generally performed better

than DECT.
e Pure GA results were always better than either of the two heuristics.

e The hybrid GA performed better than pure GA for equal number of iterations

run or in finding an equally good solution in fewer GA iterations.

5.8 Concluding Remarks

In this chapter we described heuristic methods for minimizing the makespan in a
two-stage blocking flowshop with material handling constraints. Such problems are
encountered in production system design (e.g. automotive paint shops), service facil-
ities design (e.g. car wash), or specialty industries such as petrochemical processing.
Surprisingly, even the two-stage version of this problem is not easy to solve due to
the material handling restriction present. We prove that the problem is unary NP-
hard. Computational studies indicate that metaheuristic methods such as genetic
algorithms can be fruitfully used to solve practical instances of this problem. We
also explore the special structural features of this problem and develop problem-
specific solution construction heuristics for different job processing time scenarios.
Such heuristics can provide efficiency in solution evolution by hybridizing—by provid-
ing good starting points for a method like the genetic algorithm, particularly when

the problem is large and computational efficiency may be paramount.
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CHAPTER 6

CONCLUSION AND DIRECTION FOR FUTURE RESEARCH

This chapter concludes the findings of this research, and discusses the scope and
direction of future research. This study dealt with the optimization problems arising
in practical and real world situations. We discussed three specific applications in
production and operations management, telecommunications and scheduling areas.
We developed analytical formulations and heuristics and meta-heuristic methods for

these problems.

The first problem the study addressed was that of computing forecast horizons in
multi-period decision environments. Specifically, we looked at the Dynamic Lot-size
problem. In this study we demonstrated the viability of integer programming in solv-
ing these problems. Also, we introduced a new type of weak forecast horizon - forecast
horizons subject to discrete future demand. There are several interesting directions

worth pursing along this study. We propose the following:

e Most state-of-the-art general-purpose integer programming solvers use a variety
of techniques - search strategies, e.g., depth-first-search, breadth-first-search,
best-bound, etc; different classes of cutting planes, e.g., disjunctive cuts, clique
cuts, flower cover cuts, etc; heuristics - to make the search for integer solutions
efficient. Typically, given a specific instance, solvers differ in nature of these
techniques and the extent to which they are used. Consequently, for a specific
class of problems such as the one discussed in this Chapter, there does not seems
to be a great deal of consistency across solvers. Our experience indicates that
integer programming is a practicable approach to compute forecast horizons; a
promising direction for future work is an investigation of the structure of these

problems leading to a specialized integer programming solvers.
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e Throughout this study, we have used the dynamic lot-size problem (and its
variants) to illustrate our analysis of discrete forecast horizons. Minimal use of
structural properties of the problem domain, and the constraint-based nature
of integer programming lead us to believe that our approach can be extended to
investigate forecast horizons for a wide variety of multi-period dynamic decision

problems.

e As with continuous forecast horizons, a general characterization of demand vec-
tors for which a discrete forecast horizon exists remains an open question. Due
to its prevalence in practice, a characterization for integer future demands is
especially relevant. The additional structure imposed by the discreteness as-
sumption may help make such a characterization easier to obtain than that in
the continuous demand case. Another fundamental topic is the robustness of

discrete forecast horizons to changes in data.

e An important consequence of the discreteness assumption is the reduction (with
respect to continuous demands) in the length of the minimal forecast horizon.
While a significant reduction has been observed in our numerical experiments,
there is no theoretical analysis available that provides an estimate of this re-

duction.

e This study investigates discrete forecast horizons under the assumption that
all near-term demands — from the current period until the forecast horizon —
are deterministic. In situations when these demands cannot be predicted with
certainty, a scenario-based stochastic integer programming approach can be

used. We are actively investigating the feasibility of this approach.

e Sethi and Sorger [99] have proposed a theory of rolling horizon decision making
where the first-period decision consists of the length of the time interval for
which demand must be forecasted and the production quantity. This process
is repeated in each period. The objective is to maximize the total expected

cost-of inventory holding, shortage, and forecasting over a given finite horizon.
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It would be of interest to see if their theory could be implemented with the

integer programming framework developed in this paper.

The second problem this study looked at was that of traffic grooming for wavelength
routed optical networks. We formulated mixed integer programs for this problem and
developed heuristics based on column generation. Furthermore, we obtained bounds
using Lagrangian relaxation. Our heuristic for obtaining a traffic maximizing set of
routes is based on a Price-and-Bound algorithm to solve the LP relaxation, followed
by Branch-and-Bound using only the columns generated at the root node. It might be
possible to improve the solution presented in this study by employing a Branch-and-
Price algorithm that generates columns at every node of the tree. This approach is a
possible direction for future research. However, it has to be noted that the improved
solutions may be obtained at the expense of increased computing time. Another ex-
tension could be to consider routing and wavelength assignment together in a single
formulation. Since we only consider single-hop networks, traffic routing using multi-

hops is another extension that is worth investigating.

The third and the final problem we discussed was the blocking flow-shop scheduling
problem with material handling constraint. We analyzed the structural properties of
this problem and developed heuristics and a search method using genetic algorithms.
Furthermore, we analyzed the efficiency of hybrid-genetic algorithms by combining
heuristic solutions with the genetic algorithm. Interesting future research work is to
obtain exact solutions using time-index integer programming formulations. Also, other
meta-heuristic approaches such as simulated annealing and tabu-search techniques are

worth perusing.
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